
LINX(7) manual page

Name

linx - LINX inter-process communication protocol

Synopsis

#include <linx.h>
#include <linx_socket.h>
#include <linx_ioctl.h>
#include <linx_types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>

Description

LINX is a location transparent inter-process communication protocol. It is based on the message passing
technology used in the Enea OSE family of real time operating systems.

LINX consists of a set of kernel modules and provides a standard socket based interface using its own
protocol family, PF_LINX. There is also a LINX library that provides a more advanced messaging API.
Applications normally access LINX through this library, but sometimes direct access via the socket interface
may be necessary.

Linx Concepts

An application that wants to communicate using LINX must first create a LINX endpoint. One thread may
own multiple LINX endpoints simultaneously. A LINX endpoint is created with a non-unique name (a string).
A handle which is used to refer to the endpoint in subsequent calls is returned to the application.

LINX endpoints communicate by sending and receiving LINX signals. The properties of LINX signals are
described below.

Each LINX endpoint has a binary identifier called a spid which is unique within the node. A sending endpoint
must know the spid of the destination endpoint to be able to communicate. The spid of a peer LINX endpoint
is normally obtained by hunting for its name. When an endpoint with a matching name is found or created,
LINX sends a hunt signal back to the hunting endpoint that appears to have been sent from the found
endpoint. The spid can thus be obtained by looking at the sender of this signal.

A LINX endpoint can supervise, or attach to, the spid of a peer endpoint in order to be notified by a LINX
signal when it is terminated or becomes unreachable.

The communication path between two LINX nodes is called a LINX link. A LINX link is created with a
name string, and the same link may have different names on the opposite nodes, i.e. the link between nodes A
and B may be called "LinkToB" on A, and "LinkToA" on B.

When hunting for an endpoint on a remote node, the name of the endpoint is prepended with the path of link
names needed to reach the node, e.g. "LinkToB/LinkToC/EndpointName". LINX will create a virtual
endpoint that acts as a local representation of the remote endpoint. LINX signals sent to the spid of a virtual
endpoint are automatically routed to the proper destination on the remote node.

LINX(7) manual page

LINX(7) manual page 1

When a LINX endpoint is closed, its owned LINX signals are freed.

It is not allowed to use a LINX endpoint from two contexts at the same time. When a Linux process has
multiple threads, it is not allowed to access a LINX endpoint from other contexts than the one that opened it.
When fork(2) is called, the child process inherits copies of the parents socket related resources, including
LINX endpoints. In this case, either the parent or the child shall close its LINX endpoints. A LINX endpoint is
not removed until it has been closed by all of its owners.

LINX Application Interfaces

LINX provides both a standard socket interface and a more advanced LINX API which is available through
the LINX library, to be linked with the application. The LINX API is the recommended way for applications
to access LINX, since it simplifies for the programmer by abstracting the direct socket interactions. It
implements a set of functions specified in linx.h(3) .

The LINX socket interface is the underlying socket implementation provided by the LINX kernel module and
is used by the LINX library. It is described in detail below.

It is possible for applications to use a combination of the LINX API and the LINX socket interface. In this
case, the LINX API function linx_get_descriptor(3) can be used to obtain the socket descriptor of a LINX
endpoint. This descriptor can be used together with other file descriptors in generic poll(2) or select(2) calls.
Note that it is NOT allowed to call close(2) on a LINX socket descriptor obtained by a
linx_get_descriptor(3) call.

LINX Signals

A LINX signal consists of a mandatory leading 4-byte signal number, optionally followed by data. Thus, the
size of a LINX signal buffer must be at least 4 bytes. LINX signal numbers are of type LINX_SIGSELECT.
Signal numbers are mainly defined by the applications, but a few values are not allowed. Zero (0) is illegal
and must not be used and 250-255 are reserved by LINX.

LINX provides endian conversion of the signal number if needed when a signal is sent to a remote node. The
signal data is not converted.

LINX Socket Interface

The LINX socket interface allows application programmers to access LINX using standard socket calls. It
should be noted that only a subset of the socket calls are implemented and that additional features have been
made available through ioctl calls. These deviations and features are described below.

struct sockaddr_linx
When using the socket interface directly, a LINX endpoint is represented by a sockaddr_linx
structure:

struct sockaddr_linx
{
 sa_family_t family;
 LINX_SPID spid;
};

LINX(7) manual page

Linx Concepts 2

family shall be AF_LINX and spid is the spid of the LINX endpoint. The sockaddr_linx structure is
type-casted into a generic sockaddr structure when passed to the socket interface function calls.

The following calls are provided by the LINX socket interface:

socket()
A LINX socket is created by calling the socket(2) function as:

linx_sd = socket(PF_LINX, SOCK_DGRAM, 0);

When a LINX socket is created, its name is unspecified. To assign a name to the socket, use the
LINX_IOCTL_HUNTNAME ioctl request.

On success, the return value is a descriptor referencing the socket. On error, -1 is returned and errno
is set to one of the following values:

EPROTONOTSUPPORTED
The protocol type is not supported. Only PF_LINX is accepted.

ESOCKTNOSUPPORT
The socket type is not supported. Only SOCK_DGRAM is accepted.

ENOMEM
Insufficient memory is available. Alternatively, the maximum number of spids has been reached. This
value is configurable as a parameter to the LINX kernel module, see LINX Users Guide for more
information.

sendto()
The sendto(2) function is called as:

len = sendto(linx_sd, payload, size, 0, (struct sockaddr*) &sockaddr_linx, sizeof(struct
sockaddr_linx));

The payload shall be a LINX signal buffer and size shall be its length in bytes. Note that it is
mandatory for a LINX signal to have a leading 4 byte signal number. The spid field of the
sockaddr_linx structure shall be the spid of the destination endpoint.

On success, the number of bytes sent is returned. On error, -1 is returned and errno is set to one of the
following values:

EBADF
An invalid descriptor was specified.

ECONNRESET
The destination endpoint has been killed.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

LINX(7) manual page

LINX Socket Interface 3

EOPNOTSUPP
The sending LINX socket has not been assigned a name.

EPIPE
This error is reported at an attempt to send to the spid of a LINX endpoint that is being closed as the
call occurs.

sendmsg()
The sendmsg(2) function is called as:

len = sendmsg(linx_sd, *msg, 0);

msg is a msghdr structure as defined in sendmsg(2) . The msg_iov field of the msghdr structure shall
point to an iovec structure containing the LINX signal buffer to transmit and the msg_iovlen field
shall be set to 1. Note that it is mandatory for a LINX signal to have a leading 4 byte signal number.
The msg_name field shall be a pointer to a sockaddr_linx structure containing the spid of the
destination endpoint and the msg_namelen field shall be set to the size of the sockaddr_linx structure.
The ancillary fields and the flags field of the msghdr structure shall not be used and be set to zero.

On success, the number of bytes sent is returned. On error, -1 is returned and errno is set to one of the
following values:

EBADF
An invalid descriptor was specified.

ECONNRESET
The destination endpoint has been killed. Note that this case is accepted and the signal is silently
discarded by LINX.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

EOPNOTSUPP
The sending socket has not been assigned a name.

EPIPE
This error is reported at an attempt to send to the spid of a LINX endpoint that is being closed as the
call occurs.

recvfrom()
The recvfrom(2) function is called as:

len = recvfrom(linx_sd, payload, size, 0, (struct sockaddr*) &sockaddr_linx, sizeof(struct
sockaddr_linx));

It is used to receive any LINX signal from any LINX endpoint. It can not be used when signal number
filtering and/or sender filtering is needed, see recvmsg(2) . The first signal in the sockets receive
queue is returned in the supplied payload buffer. If no signal is currently available at the socket, the
call blocks until a signal is received. The sender of the signal is returned in the sockaddr_linx
structure. Note that the size of the payload buffer must be at least 4 bytes, since it is mandatory for a
LINX signal to have a 4 byte leading signal number.

LINX(7) manual page

LINX Socket Interface 4

On success, the number of bytes received is returned. If the received signal is larger than the supplied
payload buffer, zero is returned and the signal buffer size is written as a 32-bit value in the first 4
bytes of the payload buffer. On error, -1 is returned and errno is set to one of the following values:

EBADF
An invalid descriptor was specified.

EFAULT
Invalid payload buffer pointer provided.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

EOPNOTSUPP
The receiving socket has not been assigned a name.

recvmsg()
The recvmsg(2) function is called as:

len = recvmsg(sd, msg, 0);

msg is a pointer to a msghdr structure as defined in recvmsg(2) . A LINX signal buffer shall be
supplied in an iovec structure pointed to from the msg_iov field and the msg_iovlen field shall be set
to 1. Note that the size of the supplied buffer must be at least 4 bytes, since it is mandatory for a LINX
signal to have a 4 byte leading signal number.

The recvmsg(2) call supports signal number filtering and sender filtering. This allows the user to
specify which signal numbers shall be received and/or from which sender. The signal filter is
described by a linx_receive_filter_param structure:

struct linx_receive_filter_param
{
 LINX_SPID from;
 LINX_OSBUFSIZE sigselect_size;
 const LINX_SIGSELECT *sigselect;
};

The from field specifies that only signals from a specific spid should be received and sigselect is an
array of LINX_SIGSELECT numbers to be received. The first position in the array contains the
number of entries in the list that follows. If the first position is set to a negative count, all LINX
signals except those listed will be received. The size of the array is sigselect_size.

The filtering uses ancillary fields in the msghdr structure and is described by the following example
code:

struct msghdr msg;
char cmsg[CMSG_SPACE(sizeof(struct linx_receive_filter_param))];
struct linx_receive_filter_param * rfp;
struct iovec iov;
const LINX_SIGSELECT sig_sel[] = { 1, EXAMPLE_SIG };

LINX(7) manual page

LINX Socket Interface 5

rfp = ((struct linx_receive_filter_param *)
 (CMSG_DATA(((struct cmsghdr *)cmsg))));
rfp->sigselect_size = sizeof(sig_sel);
rfp->from = from_spid;
rfp->sigselect = sig_sel;
msg.msg_name = (void*)&linx_addr;
msg.msg_namelen = sizeof(struct sockaddr_linx);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = cmsg;
msg.msg_controllen =
 CMSG_SPACE(sizeof(struct linx_receive_filter_param));
((struct cmsghdr *)cmsg)->cmsg_len = msg.msg_controllen;
((struct cmsghdr *)cmsg)->cmsg_level = 0;
((struct cmsghdr *)cmsg)->cmsg_type = 0;
iov.iov_base = *signal;
iov.iov_len = sigsize;
read_size = recvmsg(linx->socket, &msg, 0);

On success, the number of bytes received is returned. If the received signal is larger than the supplied
payload buffer, zero is returned and the signal buffer size is written as a 32-bit value in the first 4
bytes of the payload buffer. On error, -1 is returned and errno is set to one of the following values:

EBADF
An invalid descriptor was specified.

EFAULT
An invalid msghdr structure was provided.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

EOPNOTSUPP
The sending socket has not been assigned a name.

poll()
LINX socket descriptors can be used in the poll(2) call.

The call returns a bitmask that indicates the state of the LINX socket receive queues. The following
possible bits can be set at return from this function: POLLERR if the LINX socket is in an error
state, POLLHUP if the LINX socket has been shutdown/released, POLLIN and POLLRDNORM if
the LINX socket has data to read in receive queue.

select()
LINX socket descriptors can be used together with other file descriptors in the select(2) call.

ioctl()
IOCTL requests are sent to a LINX socket using the ioctl(2) call. See below for all IOCTL request
codes supported by LINX sockets.

close()
A LINX socket created by a socket(2) call can be closed with close(2) . Note that this function shall
NOT be used on any LINX socket descriptor created with linx_open(3) or obtained by the LINX API
function linx_get_descriptor(3) .

On success, 0 is returned, otherwise -1 is returned and errno can be one of the following errors:

LINX(7) manual page

LINX Socket Interface 6

EBADF
An invalid descriptor was specified.

Only the calls described above are supported by a LINX socket. The following are NOT supported on LINX
sockets and shall not be used: bind(2) , connect(2) , socketpair(2) , accept(2) , getname(2) , listen(2) ,
shutdown(2) , setsockopt(2) , getsockopt(2) , mmap(2) and sendpage(2) .

IOCTL Request Codes

The following IOCTL request codes can be accessed using ioctl(2) on LINX sockets:

LINX_IOCTL_SEND

Sends a signal from a LINX socket sd. The correct syntax is:

struct linx_sndrcv_param *sndrcv;

error = ioctl(sd, LINX_IOCTL_SEND, sndrcv);

sndrcv is a linx_sndrcv_param structure:

struct linx_sndrcv_param
{

 __u32 from;
 __u32 to;
 __u32 size;
 __u32 sig_attr;
 __u32 sigselect_size;
 __u64 sigselect;
 __u32 tmo;
 __u64 buffer;

};

from is the spid of the sender, the sender does not need to be the current socket, the signal is
sent from the current socket but the receiver will see the from as the sending spid, the default
case is that from is the spid of the current LINX socket. to is the spid of the receiver, size is
the size of the signal to be sent and sig_attr are the attributes of the signal. The sigselect_size
and sigselect are not used by LINX_IOCTL_SEND and notused is for padding the struct
since it needs to be 64-bit aligned but should be zeroed for future use. buffer is the pointer to
the buffer to be sent, it is passed as a 64 bit unsigned value to be both 32-bit and 64-bit
compatible.

On success, the number of bytes sent is returned.

LINX_IOCTL_RECEIVE

Receives a signal on a LINX socket sd. The call will block until a signal is received. The
correct syntax is:

struct linx_sndrcv_param *sndrcv;

LINX(7) manual page

IOCTL Request Codes 7

error = ioctl(sd, LINX_IOCTL_RECEIVE, sndrcv);

sndrcv is a linx_sndrcv_param structure:

struct linx_sndrcv_param
{

 __u32 from;
 __u32 to;
 __u32 size;
 __u32 sig_attr;
 __u32 sigselect_size;
 __u64 sigselect;
 __u32 tmo;
 __u64 buffer;

};

The from field should be set to LINX_ILLEGAL_SPID if signals from anyone should be
received or if only signals from a specific spid should be received then from should be set to
that spid. If LINX_ILLEGAL_SPID was set the from will contain the spid of the sender
after the return of the call. The to field is not used when receiving a signal. The size field is
the size of the provided buffer. When the call returns the sig_attr field is set to the attribute
the signal carriers. The sigselect field is an array of LINX_SIGSELECT numbers to be
received. The first position in the array contains the number of entries in the list that follows.
If the first position is set to a negative count, all LINX signals except those listed will be
received. The size of the array is sigselect_size. When the tmo field is used the call waits
maximum tmo milliseconds before returning even if no signal has been received, if a
blocking receive is requested the tmo field should be ~0 (0xFFFFFFFF), this will block
forever. If no signal is received the. buffer pointer will be set to NULL (the provided buffer
is always consumed). The buffer field is a pointer to the buffer provided by the user.

On success, the number of bytes received is returned. If the received signal is larger than the
supplied payload buffer, zero is returned and the signal buffer size is written as a 32-bit value
in the first 4 bytes of the payload buffer.

LINX_IOCTL_REQUEST_TMO

Request a timeout, a signal is sent to the requesting LINX endpoint when a timeout has
expired. The correct syntax is:

struct linx_tmo_param *tmo_param;

error = ioctl(sd, LINX_IOCTL_REQUEST_TMO, tmo_param);

tmo_param is a linx_tmo_param structure:

struct linx_tmo_param
{

 LINX_OSTIME tmo;
 LINX_OSBUFSIZE sigsize;
 union LINX_SIGNAL *sig;
 LINX_OSTMOREF tmoref;

};

LINX(7) manual page

IOCTL Request Codes 8

tmo is the timeout in milliseconds and the actual timeout time is rounded upward to the nest
larger tick, the call guarantees at least the number of milliseconds requested, sig is a pointer to
the signal that will be returned when the timeout expires, if sig is LINX_NIL then the default
timeout signal with signal number LINX_OS_TMO_SIG is received instead, sigsize is the
size of the provided signal, if no signal is provided the value must be set to zero.

On success, an timemout reference is returned in tmoref. This reference can be used in
LINX_IOCTL_CANCEL_TMO and LINX_IOCTL_MODIFY_TMO.

LINX_IOCTL_CANCEL_TMO

Cancel a pending timeout, the correct syntax is:

struct linx_tmo_param *tmo_param;

error = ioctl(sd, LINX_IOCTL_CANCEL_TMO, tmo_param);

tmo_param is a linx_tmo_param structure:

struct linx_tmo_param
{

 LINX_OSTIME tmo;
 LINX_OSBUFSIZE sigsize;
 union LINX_SIGNAL *sig;
 LINX_OSTMOREF tmoref;

};

tmo, sigsize and sig are ignored, tmoref is used to identify which timeout is to be canceled, it
is guaranteed that the timeout signal cannot be received after cancellation.

LINX_IOCTL_MODIFY_TMO

Modifies a pending timeout, the correct syntax is:

struct linx_tmo_param *tmo_param;

error = ioctl(sd, LINX_IOCTL_MODIFY_TMO, tmo_param);

tmo_param is a linx_tmo_param structure:

struct linx_tmo_param
{

 LINX_OSTIME tmo;
 LINX_OSBUFSIZE sigsize;
 union LINX_SIGNAL *sig;
 LINX_OSTMOREF tmoref;

};

sigsize and sig are ignored, tmoref is used to identify which timeout is to be modified, tmo is
the new timeout value.

LINX(7) manual page

IOCTL Request Codes 9

LINX_IOCTL_REQUEST_NEW_LINK

Request a signal when a new link is available, the correct syntax is:

struct linx_new_link_param *new_link_param;

error = ioctl(sd, LINX_IOCTL_REQUEST_NEW_LINK, new_link_param);

new_link_param is a linx_new_link_param structure:

struct linx_new_link_param
{

 uint32_t token;
 uint32_t new_link_ref;

};

token is passed to and from the LINX kernel module keeping track of which links the caller
already have been notified about, the token value is ignored the first time a LINX endpint
requests a new link signal. The token received in the new link signal should then be used in
the next new link signal request. new_link_ref is used to cancel a pending new link signal
request.

The syntax of the new link signal received when a new link is available is:

struct linx_new_link {
 LINX_SIGSELECT signo;
 LINX_NLTOKEN token;
 int name;
 int attr;
 char buf[1];

};

signo is LINX_OS_NEW_LINK_SIG, token is the token value to be used in the next request
for a new link signal, name is the offset into buf where the name of the new link is stored, the
name is null terminated, attr is the offset into buf where the attributes, if any, of the link are
stored, the attribute string is null terminted, buf is a character buffer containg the name and
the attributes, if any, of the link.

LINX_IOCTL_CANCEL_NEW_LINK

Cancels a pending new link signal request, the correct syntax is:

struct linx_new_link_param *new_link_param;

error = ioctl(sd, LINX_IOCTL_CANCEL_NEW_LINK, new_link_param);

new_link_param is a linx_new_link_param structure:

LINX(7) manual page

IOCTL Request Codes 10

struct linx_new_link_param
{

 uint32_t token;
 uint32_t new_link_ref;

};

token is ignored, new_link_ref is used to identify which pending new link signal request is to
be cancelled, after the cancellation it is guarnateed that no more new link signals can be
received.

LINX_IOCTL_HUNTNAME

Sets the name of a LINX socket sd and returns its binary LINX endpoint identifier, the spid.
The correct syntax is:

struct linx_huntname *huntname;

error = ioctl(sd, LINX_IOCTL_HUNTNAME, huntname);

huntname is a linx_huntname structure:

struct linx_huntname
{
 LINX_SPID spid;
 size_t namelen;
 char *name;
};

namelen is the size in bytes of the string name that contains the name to assign to the socket.
On success, spid is set to the spid assigned to the LINX socket.

LINX_IOCTL_HUNT

Hunts for a LINX endpoint (that has been assigned a name) to obtain its spid. The correct
syntax is:

struct linx_hunt_param *hunt_param;

error = ioctl(sd, LINX_IOCTL_HUNT, hunt_param);

hunt_param is a linx_hunt_param structure:

struct linx_hunt_param
{
 LINX_OSBUFSIZE sigsize;
 union LINX_SIGNAL *sig;
 LINX_SPID from;
 size_t namelen;
 char *name;

LINX(7) manual page

IOCTL Request Codes 11

};

The sig parameter optionally holds a signal of size sigsize to be received when the other
LINX socket is available. If no signal (NULL) is provided, the LINX default hunt signal of
type LINX_OS_HUNT_SIG will be used. The from parameter shall be set to the owner of
the hunt. In the normal case, this is the spid of the LINX socket performing the hunt call. If
the spid associated with a different LINX socket is provided, the hunt can be cancelled by
closing that socket. The hunt signal is always sent to the LINX socket performing the hunt
call. The namelen is the size of the string name that contains the name of the LINX endpoint
to be hunted for.

LINX_IOCTL_ATTACH

Attaches to a LINX endpoint in order to supervise it, i.e. to get an attach signal if it becomes
unavailable. The correct syntax is:

struct linx_attach_param *attach_param;

error = ioctl(sd, LINX_IOCTL_ATTACH, attach_param);

attach_param is a linx_attach_param structure:

struct linx_attach_param
{
 LINX_SPID spid;
 LINX_OSBUFSIZE sigsize;
 union LINX_SIGNAL *sig;
 LINX_OSATTREF attref;
};

The spid field is the spid of the LINX endpoint to supervise. The sig parameter optionally
holds a LINX signal of size sigsize to be received when the supervised LINX endpoint
becomes unavailable. If no signal (NULL) is provided, the LINX default attach signal of type
LINX_OS_ATTACH_SIG will be used.

On success, an attach reference is returned in attref. This reference can be used in
LINX_IOCTL_DETACH later.

LINX_IOCTL_DETACH

Detaches from a supervised LINX endpoint, i.e. stops supervising it. The correct syntax is:

struct linx_detach_param *detach_param;

error = ioctl(sd, LINX_IOCTL_DETACH, detach_param);

The detach_param parameter is a struct linx_detach_param with the following fields:

LINX(7) manual page

IOCTL Request Codes 12

struct linx_detach_param
{
 LINX_OSATTREF attref;
}

The attref field is an attach reference returned from a LINX_IOCTL_ATTACH call.

LINX_IOCTL_SET_RECEIVE_FILTER

Sets up a receive filter prior to a select(2) call. The correct syntax is:

struct linx_receive_filter_param *rfp;

error = ioctl(sd, LINX_IOCTL_SET_RECEIVE_FILTER, rfp);

rfp is a linx_receive_filter_param structure:

struct linx_receive_filter_param
{
 LINX_SPID from;
 LINX_OSBUFSIZE sigselect_size;
 const LINX_SIGSELECT *sigselect;
};

The from parameter specifies that only signals from a specific spid should be received and
sigselect is an array of LINX_SIGSELECT numbers to be received. The first position in the
array contains the number of entries in the list that follows. If the first position is set to a
negative count, all LINX signals except those listed will be received. The size of the array is
sigselect_size.

LINX_IOCTL_REGISTER_LINK_SUPERVISOR

Registers this socket as a supervisor of LINX links. The correct syntax is:

error = ioctl(sd, LINX_IOCTL_REGISTER_LINK_SUPERVISOR, 0);

When a link is established to another node, a notification signal will be sent to all LINX
sockets that have registered as link supervisor. This signal has the format:

LINX(7) manual page

IOCTL Request Codes 13

struct linx_new_link
{
 LINX_SIGSELECT signo;
 int name;
 int attr;
 char buf[1];
};

The signo is LINX_OS_LINK_SIG. The name of the link begins name bytes into buf and
its attributes starts attr bytes into buf. Both the name and attributes are null terminated strings
assigned to a link with the linxcfg(1) command.

To be notified when a link becomes unavailable, first do a LINX_IOCTL_HUNT on the link
name. This returns a spid representing the link. Then the link can be supervised using
LINX_IOCTL_ATTACH to that spid.

LINX_IOCTL_UNREGISTER_LINK_SUPERVISOR

Unregister this socket as a supervisor of LINX links. The correct syntax is:

error = ioctl(sd, LINX_IOCTL_UNREGISTER_LINK_SUPERVISOR, 0);

LINX_IOCTL_VERSION

Returns the version of the LINX kernel module. The correct syntax is:

unsigned int version;

error = ioctl(sd, LINX_IOCTL_VERSION, &version);

On success, the version parameter contains the version of the LINX kernel module. The
LINX version number is a 32-bit number composed of an 8-bit major version, an 16-bit minor
version, and a 8-bit seq (patch) number.

LINX_IOCTL_INFO

Retrieves information from the LINX kernel module. The correct syntax is:

struct linx_info info;

error = ioctl(sd, LINX_IOCTL_INFO, &info);

The info parameter is a struct linx_info with the following fields:

LINX(7) manual page

IOCTL Request Codes 14

struct linx_info
{
 int type;
 void *type_spec;
};

The type field indicates the requested type of information and type_spec is a pointer to a
struct that will contain input and return parameters.

Note that information retrieved with LINX_IOCTL_INFO may have become inaccurate when
used in a subsequent call. The application must be prepared to handle errors related to this.

The different kinds of information that can be retrieved from the LINX kernel module are:

LINX_INFO_SUMMARY

Provides a summary of the most important information from the LINX kernel
module.

struct linx_info info;

struct linx_info_summary info_summary;

info.type = LINX_INFO_SUMMARY;

info.type_spec = &info_summary;

The linx_info_summary structure is defined as:

struct linx_info_summary
{
 int no_of_local_sockets;
 int no_of_remote_sockets;
 int no_of_link_sockets;
 int no_of_pend_attach;
 int no_of_pend_hunt;
 int no_of_queued_signals;
};

The no_of_local_sockets field is the number of LINX sockets open locally,
no_of_remote_sockets is the number of internal sockets open that have been
created by the LINX kernel module to represent remote LINX endpoints. The
no_of_link_sockets field is the number of open sockets representing LINX
links to other nodes. The no_of_pend_attach field is the number of pending
attaches, no_of_pend_hunt is the number of pending hunts and

LINX(7) manual page

IOCTL Request Codes 15

no_of_queued_signals is the number of queued signals.

LINX_INFO_SOCKETS

Returns the number of open LINX sockets and their LINX endpoint
identifiers (spids).

struct linx_info info;

struct linx_info_sockets info_sockets;

info.type = LINX_INFO_SOCKETS;

info.type_spec = &info_sockets;

The linx_info_sockets structure is defined as:

struct linx_info_sockets
{
 LINX_OSBOOLEAN local;
 LINX_OSBOOLEAN remote;
 LINX_OSBOOLEAN link;
 int buffer_size;
 int no_of_sockets;
 LINX_SPID *buffer;
};

If local is true, local sockets are included in the output, if remote is true,
remote sockets are included and if link is true, sockets representing LINX
links are included. The number of LINX sockets matching the search is
returned in no_of_sockets and the array of spids is returned in the provided
buffer. of size buffer_size bytes. If the provided buffer is too small, not all
sockets will be included.

LINX_INFO_TYPE

Returns the type of a LINX endpoint.

struct linx_info info;

struct linx_info_type info_type;

LINX(7) manual page

IOCTL Request Codes 16

info.type = LINX_INFO_TYPE;

info.type_spec = &info_type;

The linx_info_type structure is defined as:

struct linx_info_type
{
 LINX_SPID spid;
 int type;
};

The spid field is the identifier of the LINX endpoint for which the type is
requested. The type is returned in type. A LINX endpoint can be of types:
LINX_TYPE_UNKNOWN, LINX_TYPE_LOCAL,
LINX_TYPE_REMOTE, LINX_TYPE_LINK, LINX_TYPE_ILLEGAL
or LINX_TYPE_ZOMBIE.

LINX_INFO_STATE

Returns the state of a LINX endpoint.

struct linx_info info;

struct linx_info_state info_state;

info.type = LINX_INFO_STATE;

info.type_spec = &info_state;

The linx_info_state structure is defined as:

struct linx_info_state
{
 LINX_SPID spid;
 int state;
};

The spid field is the identifier of the LINX endpoint for which the state is
requested. The state is returned in state. A LINX socket can be in states:
LINX_STATE_UNKNOWN, LINX_STATE_RUNNING,

LINX(7) manual page

IOCTL Request Codes 17

LINX_STATE_RECV or LINX_STATE_POLL.

LINX_INFO_FILTERS

Returns information about the receive filters set up by a LINX endpoint.

struct linx_info info;

struct linx_info_filters info_filters;

info.type = LINX_INFO_FILTERS;

info.type_spec = &info_filters;

The linx_info_filters structure is defined as:

struct linx_info_filters
{
 LINX_SPID spid;
 LINX_SPID from_filter;
 int buffer_size;
 int no_of_sigselect;
 LINX_SIGSELECT *buffer;
};

The spid field is the identifier of the LINX endpoint for which the receive
filter is requested. If the endpoint has setup a receive filter only accepting
signals from a specific LINX endpoint, the spid of that endpoint is returned in
from_filter. The number of LINX_SIGSELECT signal numbers in the
receive filter is returned in no_of_sigselect and an array of these signal
numbers are returned in the provided buffer. The buffer_size is the size in
bytes of the buffer. If the buffer is too small, not all signal numbers in the
filter are included.

LINX_INFO_RECV_QUEUE

Returns the receive queue of a LINX endpoint.

struct linx_info info;

struct linx_info_recv_queue info_recv_queue;

LINX(7) manual page

IOCTL Request Codes 18

info.type = LINX_INFO_RECV_QUEUE;

info.type_spec = &info_recv_queue;

The linx_info_recv_queue structure is defined as:

struct linx_info_recv_queue
{
 LINX_SPID spid;
 int buffer_size;
 int no_of_signals;
 struct linx_info_signal *buffer;
};

The spid field is the identifier of the LINX endpoint for which the receive
queue is requested. The number of signals in the queue is returned in
no_of_signals. An array with queue information is returned in the provided
buffer. The buffer_size is the size in bytes of the buffer. If the buffer is too
small, not all signals are included. The linx_info_signal structure is defined
as:

struct linx_info_signal
{
 LINX_SIGSELECT signo;
 int size;
 LINX_SPID from;
};

The signo field holds the signal number, size is the size in bytes of the signal
and from is the spid of the sending LINX endpoint.

LINX_INFO_PEND_ATTACH

Returns information about pending attaches from or to a LINX endpoint.

struct linx_info info;

struct linx_info_pend_attach info_pend_attach;

info.type = LINX_INFO_PEND_ATTACH;

info.type_spec = &info_pend_attach;

LINX(7) manual page

IOCTL Request Codes 19

The linx_info_pend_attach structure is defined as:

struct linx_info_pend_attach
{
 LINX_SPID spid;
 int from_or_to;
 int buffer_size;
 int no_of_attaches;
 struct linx_info_attach *buffer;
};

The spid field is the identifier of the LINX endpoint for which attach
informations is requested. If from_or_to is set to LINX_ATTACH_FROM,
information about attaches from the spid is returned. If it is set to
LINX_ATTACH_TO, information about attaches to the spid is returned.
The number of attaches to/from the spid is returned in no_of_attaches,
Information about the attaches are returned in the provided buffer. The
buffer_size is the size in bytes of the buffer. If the buffer is too small, not all
attaches are included. The linx_info_attach structure is defined as:

struct linx_info_attach
{
 LINX_SPID spid;
 LINX_OSATTREF attref;
 struct linx_info_signal attach_signal;
};

The spid is the identifier of the LINX endpoint that has attached or has been
attached to (depending on what from_or_to is set to). The attref field is the
attach reference and attach_signal is the attach signal.

LINX_INFO_PEND_HUNT

Returns information about pending hunts issued from any LINX endpoint.

struct linx_info info;

struct linx_info_pend_hunt info_pend_hunt;

info.type = LINX_INFO_PEND_HUNT;

info.type_spec = &info_pend_hunt;

LINX(7) manual page

IOCTL Request Codes 20

The linx_info_pend_hunt structure is defined as:

struct linx_info_pend_hunt
{
 LINX_SPID spid;
 int buffer_size;
 int strings_offset;
 int no_of_hunts;
 struct linx_info_hunt *buffer;
};

The spid field is the identifier of the LINX endpoint for which hunt
information is requested. The number of pending hunts is returned in
no_of_hunts and information about each pending hunt is returned in the
provided buffer. The buffer_size is the size in bytes of the buffer. If the
buffer is too small, not all hunts are included. The strings_offset is the offset
into the buffer where the name strings are stored. Each linx_info_hunt
structure is defined as:

struct linx_info_hunt
{
 struct linx_info_signal hunt_signal;
 LINX_SPID owner;
 char *hunt_name;
};

The owner field is the owner of the pending hunt and hunt_name is a string
containing the name hunted for. The hunt_signal is the hunt signal. The
linx_info_signal structure is described under
LINX_INFO_RECV_QUEUE.

LINX_INFO_PEND_TMO

Returns information about pending timeouts issued from any LINX endpoint.

struct linx_info info;

struct linx_info_pend_tmo info_pend_tmo;

info.type = LINX_INFO_PEND_TMO;

info.type_spec = &info_pend_tmo;

LINX(7) manual page

IOCTL Request Codes 21

The linx_info_pend_tmo structure is defined as:

struct linx_info_pend_tmo
{
 LINX_SPID spid;
 int buffer_size;
 int no_of_timeouts;
 struct linx_info_tmo *buffer;
};

The spid field is the identifier of the LINX endpoint for which hunt
information is requested. The number of pending timeouts is returned in
no_of_timeouts and information about each pending timeout is returned in
the provided buffer. The buffer_size is the size in bytes of the buffer. If the
buffer is too small, not all timeouts are included. Each linx_info_tmo
structure is defined as:

struct linx_info_tmo
{
 LINX_OSTIME tmo;
 LINX_OSTMOREF tmoref;
 struct linx_info_signal tmo_signal;
};

The tmo field is the remaining time and tmoref is the timeout reference. The
tmo_signal holds the timeout signal information.

LINX_INFO_SIGNAL_PAYLOAD

Returns the payload of a signal owned by a LINX endpoint.

struct linx_info info;

struct linx_info_signal_payload info_signal_payload;

info.type = LINX_INFO_SIGNAL_PAYLOAD;

info.type_spec = &info_signal_payload;

The linx_info_signal_payload structure is defined as:

LINX(7) manual page

IOCTL Request Codes 22

struct linx_info_signal_payload
{
 LINX_SPID spid;
 int buffer_size;
 struct linx_info_signal signal;
 int payload_size;
 char *buffer;
};

The spid field is the identifier of the LINX endpoint owning the signal and
signal is a linx_info_signal structure returned from a previous LINX_INFO
call. The signal buffer will be returned in the provided buffer. The
buffer_size is the size in bytes of the buffer. If the provided buffer is too
small, only the beginning of the signal buffer is returned. The payload_size
shows the size in bytes of the returned signal payload. If the provided buffer
is larger than the signal payload, payload_size will be less then buffer_size.
If no signal payload matching the signal the payload_size will be set to zero.

LINX_INFO_NAME

Returns the name of a LINX endpoint.

struct linx_info info;

struct linx_info_name info_name;

info.type = LINX_INFO_NAME;

info.type_spec = &info_name;

The linx_info_name structure is defined as:

struct linx_info_name
{
 LINX_SPID spid;
 int namelen;
 char *name;
};

The spid field is the identifier of the LINX endpoint for which the name is
requested. The namelen field is the length of the provided name buffer in
which the name is be returned. If the LINX socket endpoint has not been
assigned a name yet zero is returned and name is set to the empty string.

LINX(7) manual page

IOCTL Request Codes 23

LINX_INFO_OWNER

Returns the process (PID) that owns a LINX endpoint.

struct linx_info info;

struct linx_info_owner info_owner;

info.type = LINX_INFO_OWNER;

info.type_spec = &info_owner;

The linx_info_owner structure is defined as:

struct linx_info_owner
{
 LINX_SPID spid;
 pid_t owner;
};

The spid field is the identifier of the LINX endpoint for which the
information is requested. On success, the PID of the owning process is
returned in owner.

LINX_INFO_STAT

Returns statistics for a LINX endpoint. This requires that the LINX kernel
module has been compiled with the "SOCK_STAT=yes" setting.

struct linx_info info;

struct linx_info_stat info_stat;

info.type = LINX_INFO_STAT;

info.type_spec = &info_stat;

The linx_info_stat structure is defined as:

struct linx_info_stat

LINX(7) manual page

IOCTL Request Codes 24

{
 LINX_SPID spid;
 uint64_t no_sent_local_signals;
 uint64_t no_recv_local_signals;
 uint64_t no_sent_local_bytes;
 uint64_t no_recv_local_bytes;
 uint64_t no_sent_remote_signals;
 uint64_t no_recv_remote_signals;
 uint64_t no_sent_remote_bytes;
 uint64_t no_recv_remote_bytes;
 uint64_t no_sent_signals;
 uint64_t no_recv_signals;
 uint64_t no_sent_bytes;
 uint64_t no_recv_bytes;
 uint64_t no_queued_bytes;
 uint64_t no_queued_signals;
};

The spid is the identifier of the LINX endpoint for which statistics is
required. If the LINX kernel module has not been compiled with
"SOCK_STAT=yes", ioctl returns -1 and errno is set to ENOSYS.

Known Bugs

None.

See Also

Generic LINX for Linux man-page:
linx(7) (this document)

LINX API man-pages:
linx.h(3) , linx_types.h(3) ,
linx_alloc(3) , linx_attach(3) , linx_cancel_tmo(3) , linx_close(3) ,
linx_create_eth_link(3) , linx_create_tcp_link(3) , linx_destroy_eth_link(3) , linx_destroy_tcp_link(3) ,
linx_detach(3) ,
linx_free_buf(3) , linx_free_name(3) , linx_free_stat(3) ,
linx_get_descriptor(3) , linx_get_name(3) , linx_get_spid(3) ,
linx_get_stat(3) , linx_hunt(3) , linx_hunt_from(3) , linx_modify_tmo(3) ,
linx_open(3) , linx_receive(3) , linx_receive_from(3) ,
linx_receive_w_tmo(3) , linx_request_tmo(3) , linx_send(3) , linx_send_w_opt(3) ,
linx_send_w_s(3) , linx_sender(3) , linx_set_sigsize(3) , linx_sigattr(3) , linx_sigsize(3)

Related LINX applications
linxcfg(1) , linxdisc(8) , linxdisc.conf(5) , linxls(1) , linxstat(1) , mkethcon(1) , mklink(1) , mktcpcon(1) ,
rmethcon(1) , rmlink(1) , rmtcpcon(1)

Related generic Linux man-pages:
socket(2) , close(2) , sendto(2) , sendmsg(2) , recvfrom(2) , recvmsg(2) , poll(2) , select(2) , ioctl(2)

LINX(7) manual page

Known Bugs 25

Author

Enea LINX team

LINX(7) manual page

Author 26

LINX_ALLOC(3) manual page

Name

linx_alloc() - Allocate a signal buffer on a LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

union LINX_SIGNAL *linx_alloc(LINX *linx, LINX_OSBUFSIZE size, LINX_SIGSELECT sig_no);

Description

linx_alloc() is used to allocate a signal buffer of the indicated size The first 4 bytes of the signal buffer are
initialized with the provided signal number sig_no. The signal number can be replaced later by writing a new
value in the first 4 bytes of the buffer.

The new buffer is owned by the LINX endpoint with which it was created. The ownership is transferred to the
receiving LINX endpoint when the signal is successfully sent using linx_send(3) . If the signal is not sent, the
owner must free the buffer by calling linx_free_buf(3) using the same linx handle. The buffer will be freed if
the owning LINX endpoint is closed or the process owning the endpoint exits.

linx is the handle to the LINX endpoint.

size is the size in bytes of the new signal buffer. The minimum size is 4 bytes, needed to store the signal
number.

sig_no is the signal number stored at the beginning of the signal buffer.

Return Value

On success, a pointer to the allocated signal buffer is returned. On error, LINX_NIL is returned and errno will
be set.

Errors

EMSGSIZE The size is invalid.

ENOMEM Insufficient memory is available.

Bugs/Limitations

None.

Notes

A LINX signal can be only be sent by the LINX endpoint that owns it, i.e. the endpoint it was created from or
received on. It can not be reused and sent by another LINX endpoint.

LINX_ALLOC(3) manual page

LINX_ALLOC(3) manual page 27

If a process, which has allocated signal buffers, calls fork(2) , both instances will own copies of the signal
buffers. As only one process may use a LINX endpoint and its resources, either the parent or the child MUST
close the LINX endpoint using linx_close(3) .

See Also

linx(7) , linx_close(3) , linx_free_buf(3) , linx_hunt(3) , linx_send(3) , fork(2)

Author

Enea LINX team

LINX_ALLOC(3) manual page

Notes 28

LINX_ATTACH(3) manual page

Name

linx_attach() - Attach to and supervise a LINX endpoint
linx_detach() - Detach from an attached LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSATTREF linx_attach(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID spid);

int linx_detach(LINX *linx, LINX_OSATTREF *attref);

Description

linx_attach() is used to supervise another LINX endpoint. When the other endpoint is closed or becomes
unavailable, an attach signal is sent to the supervising LINX endpoint linx as a notification. If a signal sig is
provided, this signal will be received when the attach is triggered. If sig is NULL, the default LINX attach
signal with signal number LINX_OS_ATTACH_SIG is received instead. The linx_attach() call consumes the
signal, taking over its ownership, and sets the sig pointer to LINX_NIL. The signal is consumed if an error
occurs too. If sig is corrupt, abort(3) is called.

linx_detach() is used to detach from an attached LINX endpoint. It's an error to detach from a LINX endpoint
more than once or to detach from a LINX endpoint after the attach signal has been received. It is not an error
to detach if the attach signal is waiting in the receive queue of the LINX endpoint. To prevent multiple
detaches, linx_detach() sets the attref pointer to LINX_ILLEGAL_ATTREF.

linx is the handle of the LINX endpoint.

spid is the identifier of the LINX endpoint to supervise.

sig is either NULL or a user defined LINX signal.

attref is the LINX_OSATTREF attach reference obtained from linx_attach().

Return Value

linx_attach() returns an attach reference (LINX_OSATTREF) when successful. This attach reference can be
used to cancel the attach (detach) after the attach is done. linx_detach() returns 0 on success.

On failure, linx_attach() returns LINX_ILLEGAL_ATTREF and linx_detach() returns -1, and errno is set
appropriately.

Errors

EBADF, ENOTSOCK The linx handle refers to an invalid socket descriptor.

LINX_ATTACH(3) manual page

LINX_ATTACH(3) manual page 29

Bugs/Limitations

None.

Example

In this example the server attaches to the client and tells the client to exit and waits for the attach signal.

Server:
#include <linx.h>
#define CLIENT_DONE_SIG 0x1234
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 const LINX_SIGSELECT sel_att_sig [] = { 1, LINX_OS_ATTACH_SIG };
 /* Create a LINX endpoint with huntname "attacher" */
 linx = linx_open("attacher", NULL, 0);
 /* Hunt for the client */
 linx_hunt(linx, "client", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, sel_hunt_sig);
 /* Retrive the clients spid */
 client = linx_sender(linx, &sig)
 /* Free the hunt signal */
 linx_free_buf(linx, &sig);
 /* Attach to the client */
 linx_attach(linx, client, NULL);
 /* Create "done" signal */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), CLIENT_DONE_SIG);
 /* Send "done" signal to client */
 linx_send(linx, &sig, client);
 /* Wait for the attach signal */
 linx_receive(linx, &sig, sel_att_sig);
 /* Close the LINX endpoint */
 linx_close(linx);
 return 0;
}
Client:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_done_sig[] = { 1, CLIENT_DONE_SIG };

 /* Open a LINX endpoint with huntname "client" */
 linx = linx_open("client", NULL, 0);
 /* Wait for server to send "done" signal */
 linx_receive(linx, &sig, sel_done_sig);
 /* Close the LINX endpoint - this will trigger the attach */
 linx_close(linx);
 return 0;
}

LINX_ATTACH(3) manual page

Bugs/Limitations 30

See Also

linx(7) , linx_attach(3) , linx_close(3) , linx_detach(3) , linx_hunt(3) , linx_send(3)

Author

Enea LINX team

LINX_ATTACH(3) manual page

See Also 31

LINX_CANCEL_TMO(3) manual page

Name

linx_request_tmo() - request timeout with specified signal
linx_cancel_tmo() - cancel the specified timeout.
linx_modify_tmo() - modify the specified timeout

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSTMOREF linx_request_tmo(LINX *linx, LINX_OSTIME tmo, union LINX_SIGNAL **sig);

int linx_cancel_tmo(LINX *linx, LINX_OSTMOREF *tmoref);

int linx_modify_tmo(LINX *linx, LINX_OSTMOREF *tmoref, LINX_OSTIME tmo);

Description

linx_request_tmo() is used to request a signal, sig, to be sent to the requesting LINX endpoint linx when a
timeout has expired. Information necessary for cancelling the time-out is returned. The actual time-out time,
tmo, is rounded upward to the next larger tick because a time-out can only trigger when a system clock tick is
received. Hence, the routine guarantees at least the number of milliseconds requested, but may add a few more
depending on the tick resolution. When several time-out signals are generated at the same clock tick, the order
is unspecified. If sig is NULL, the default LINX timeout signal with signal number LINX_OS_TMO_SIG is
received instead. The linx_request_tmo () call consumes the signal, and sets the sig pointer to LINX_NIL. The
signal is also consumed if an error occurs.

linx_cancel_tmo() is used to cancel a timeout. The time-out is identified by the tmoref parameter, which was
set by linx_request_tmo(). It's an error to cancel a timeout more than once or to cancel a timeout after the
timeout signal has been received. It is not an error to cancel the timeout if the timeout signal is waiting in the
receive queue of the LINX endpoint. To prevent multiple cancellations, linx_cancel_tmo() sets the tmoref
pointer to LINX_ILLEGAL_TMOREF.

linx_modify_tmo() is used to modify a timeout. The time-out is identified by the tmoref parameter, which
was set by linx_request_tmo(). It's an error to modify a timeout after the timeout signal has been received. It
is not an error to modify the timeout if the timeout signal is waiting in the receive queue of the LINX
endpoint.

linx is the handle of the LINX endpoint.

spid is the timeout time in milliseconds.

sig is either NULL or a user defined LINX signal.

tmoref is the reference to the timeout obtained from linx_request_tmo().

LINX_CANCEL_TMO(3) manual page

LINX_CANCEL_TMO(3) manual page 32

Return Value

linx_request_tmo() returns an timeout reference (LINX_OSTMOREF) when successful. This timeout
reference can be used to cancel the timeout. linx_cancel_tmo() returns 0 on success.

On failure, linx_request_tmo() returns LINX_ILLEGAL_TMOREF while linx_cancel_tmo() and
linx_modify_tmo() both returns -1. In all cases errno will be set appropriately.

Errors

EBADF, ENOTSOCK The linx handle refers to an invalid socket descriptor.

ENOMEM Not enough memory.

EINVAL Invalid argument.

Bugs/Limitations

None.

Example

This example shows how to request and wait for a timeout.

#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_tmo_sig [] = { 1, LINX_OS_TMO_SIG };
 /* Create a LINX endpoint */
 linx = linx_open("tmo-test", NULL, 0);
 /* Request a one second timeout. When the timeout expires the
 default signal will be returned. */
 linx_request_tmo(linx, 1000, NULL);
 /* Wait for the timeout signal. */
 linx_receive(linx, &sig, sel_tmo_sig);
 /* Free the timeout signal */
 linx_free_buf(linx, &sig);
 /* Close the LINX endpoint */
 linx_close(linx);
 return 0;
}

See Also

linx(7) , linx_close(3) , linx_open(3) linx_receive(3) ,

Author

Enea LINX team

LINX_CANCEL_TMO(3) manual page

Return Value 33

LINXCFG(1) manual page

Name

linxcfg - a configuration utility for LINX links to other nodes

Synopsis

linxcfg [-t <cm>] [-v] <command> [COMMAND PARAMETERS and OPTIONS]

linxcfg [-t <cm>] [-v] destroy <linkname> [<link 2>...]

linxcfg -h

linxcfg help <cm>

linxcfg -t <cm> [help]

Description

linxcfg is the LINX configuration utility. Depending on the command given, linxcfg can destroy or create
links using the specified Connection Manager (CM).

Options

linxcfg has common options to all commands

which should be placed before the actual command

-h, --help
Display help and exit.

-t, --type <cm>
Specifies cm as the Connection Manager to use. If this option is not provided, eth will be used as the
default CM.

You can use -h to list all available CMs.
-v, --verbose

Verbose mode.
-c, --cf, --conn-feature <feature[=value]>

Adds a connection feature. This option can be specified several times.
-l, --lf, --link-feature <feature[=value]>

Adds a link feature. This option can be specified several times.

Commands

create PARAMETERS
Creates a connection link to another node. The PARAMETERS depend on the CM specified, see
below for more details.

A remote link cannot be used until also the remote node creates the other end of the link (a link back
to the originating node). The state is "connecting" until both sides are ready and communication via

LINXCFG(1) manual page

LINXCFG(1) manual page 34

the LINX protocol can begin.
destroy <linkname> [<link2>...]

Destroy the connection link with the name linkname.
help [<cm>]

Provides help about the given cm , either specified in -t or after the help command.

If no cm was specified, it will show a list of available CMs.

Options to Different Connection Managers

Ethernet CM

The Ethernet CM is specified with the eth keyword, which is actually the default if no other CM was
specified.

The create command takes the following options:

create <macaddr> <interface> <linkname> [OPTIONAL PARAMETERS]
macaddr

Specify the remote mac address of the node to connect to, e.g. 0a:1b:2c:3d:4d:5e.
interface

Specify the Ethernet interface to use. Ex.: eth0.
linkname

Name of the connection link. This is the link part of the path in a remote hunt name to LINX
endpoints on the other node. It will also be the name seen in /proc/net/linx/cm/eth/<linkname>

Optional parameters
--window_size=nnn

This is the send/receive window_size, in number of packets on the link, and may need to be modified
to adapt LINX to really slow or really fast Ethernet performance.
Both the local and remote side negotiate the window size, being the smallest of the two sizes the
selected one. The default 128 messages should be sufficient in most configurations. The window size
shall always be of a power of 2. Size 0 means to use the default window size.

--defer_queue_size=nnn
The defer queue size is in packages, with the size depending on the LINX link. The defer queue is
used on the sender side when the send queue is full. Every message sent, when the send queue is full,
is stored in the defer queue, until the send queue has room for more messages. The defer queue size is
the maximum number of packages, with messages, that can be stored in the defer queue before the
link is disconnected, due to lack or resources. The default value 2048 packages should be sufficient in
most systems. Size 0 means to use the default defer queue size.

--send_tmo=nnn
The send acknowledge timeout specifies the time (in msec) to wait until unacknowledged messages
are resent. The default 10 should be sufficient in most systems. Tmo 0 means to use the default
timeout.

--nack_tmo=nnn
The retransmission timeout specifies the time (in msec) to wait until nack messages are resent. The
default 20 should be sufficient in most systems. Tmo 0 means to use the default timeout.

--conn_tmo=nnn
The connect timeout specifies the time (in msec) to wait until an attempt to establish a connection is
considered failed. The default 200 should be sufficient in most systems. Tmo 0 means to use the
default timeout.

--live_tmo=nnn
The connection supervision timeout specifies the time (in msec) to wait until a connection is
considered broken. Default is 100 (when the system is not idle) and should be sufficient in most
systems. When the system is idle, the live timeout is ten times larger than the configured live timeout

LINXCFG(1) manual page

Commands 35

value. Tmo 0 means to use the default timeout.
--mtu=nnn

The MTU (Maximum Transmission Unit) specifies the size in bytes of the largets packet that the
Ethernet protocol can pass onwards (this excludes the size of the Ethernet header). If not set the MTU
is fetched from the interface. Typcially a MTU of 1500 bytes is used for Ethernet.

--attributes=s
The attribute option gives the possibility to assign an arbitrary string to the link when it is created.
This string is included in the new_link signal, which is sent to all link supervisors. More information
on link supervisors can be found in linx(7) man page.

Tcp Cm

The TCP CM is specified using the tcp keyword.

The create command takes the following parameters:

create <ip> <linkname> [OPTIONAL PARAMETERS]

ip
The IP address to connect to.

linkname
Name of the connection link. This is the LINX link part of the path in a remote hunt name to LINX
endpoints on the other node. It will also be the name seen in /proc/net/linx/cm/tcp/<linkname>

Optional parameters
--live_tmo=<size>

The live_tmo parameter is the time in milliseconds between every heartbeat that is used to detect if
the connection has gone down. The default value is 1000 ms.

--use_nagle=<bool>
Set to 1 if nagle algorithm shall be used on the socket for the connection. Default is off.

--attributes=<s>
The attribute option gives the possibility to assign an arbitrary string to the link when it is created.
This string is included in the new_link signal, which is sent to all link supervisors.

Files

None.

Diagnostics

linxcfg will display more verbose information to standard out, if the -v option is specified.

Known Bugs

None.

Examples

linxcfg create 01:23:a4:4f:b3:ac eth0 link_A
linxcfg destroy link_A
linxcfg -t tcp create 192.168.1.1 link_A
linxcfg -t tcp destroy link_A

LINXCFG(1) manual page

Ethernet CM 36

See Also

linx(7) , linxstat(1) , linxdisc(8)

Author

Enea LINX team

LINXCFG(1) manual page

See Also 37

LINX_CLOSE(3) manual page

Name

linx_close() - Close a LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_close(LINX *linx);

Description

Close a LINX endpoint that was created by a linx_open(3) call. All resources owned by this LINX endpoint
are freed. When a LINX endpoint is closed, attach signals are sent to other LINX endpoints that have attached
to it using linx_attach(3) . A LINX endpoint will be automatically closed if its owner process exits without
calling linx_close(3) first. Note that the LINX socket is not closed until the last reference has been closed. See
linx_open(3) for more information about forking processes that own LINX endpoints.

linx is the handle of the LINX endpoint to close.

Return Value

On success, zero is returned. On error, -1 is returned and errno is set.

Errors

EBADF The linx handle refers to an invalid socket descriptor.

Bugs/Limitations

None.

See Also

linx(7) , linx_open(3) , linx_alloc(3) , linx_attach(3)

Author

Enea LINX team

LINX_CLOSE(3) manual page

LINX_CLOSE(3) manual page 38

LINX_CREATE_ETH_LINK(3) manual page

Name

linx_create_eth_link() - creates an Ethernet link
linx_destroy_eth_link() - destroys an Ethernet link

Synopsis

#include <linxcfg.h>

int linx_create_eth_link(char *name, char *mac, char *ifc, unsigned long window_size, unsigned long
defer_queue_size, unsigned long send_tmo, unsigned long nack_tmo, unsigned long conn_tmo, unsigned
long live_tmo);

int linx_destroy_eth_link(char *name);

Description

The calls linx_create_eth_link() and linx_destroy_eth_link() creates and destroys links between two unique
Ethernet interfaces that are present in the same subnet. A link is considered up when both sides have done
linx_create_eth_link() to each others Ethernet interfaces. A link is identified by its name which is assigned
by the parameter name. The name is local to the node so different nodes can have the same name to the same
remote interface. The MAC address to the remote interface is given in mac in the form of a character string,
i.e. "00:10:4A:0F:AB:00". The ifc parameter is used to specify which interface the link shall use.

The following options are not mandatory. If 0 is given, default values will be used.

The send and receive sliding window size is set by window_size, the window size shall always be of a power
of 2. Default window size is 128 and it should be sufficient for most configurations. Both sides must use the
same window_size.

A defer queue is used on the sender side when the send window is full, every message sent when the send
window is full is stored in a defer queue until the send window has room for more messages. The defer_queue
parameter specifies the maximum number of messages that can be stored in the defer queue before the link is
disconnected due to lack of resources. The default size is 2048 and it should be sufficient for most systems.

The send_tmo timeout specifies the time to wait until unacked messages are resent (in msec). Default timeout
is 10msec and it should be sufficient for most systems.

The nack_tmo timeout specifies the time to wait until nack messages are resent (in msec). The default timeout
of 20msec should be sufficient for most systems.

The conn_tmo timeout specifies the time to wait (in msec) until the establishment of a connection is
considered failed. The default value of 200msec should be sufficient in most systems.

The live_tmo parameter specifies the time to wait until a connection is considered broken. The default timeout
of 100msec (when the system is not idle) should be sufficient for most systems. When the system is idle, the
live timeout is ten times larger than the configured live timeout value.

LINX_CREATE_ETH_LINK(3) manual page

LINX_CREATE_ETH_LINK(3) manual page 39

Return Value

Returns zero if successful, otherwise -1 is returned and errno is set.

Errors

EINVAL if name, mac or ifc are NULL.

ENOBUFS or ENOMEM if there is not enough memory.

EPROTONOSUPPORT or EAFNOSUPPORT if linx(7) is not supported by the system.

ENFILE Not enough kernel memory to allocate a new LINX socket.

EMFILE Process file table overflow.

EACCES Permission to create a LINX socket is denied.

Bugs/Limitations

Several links can be created to and from an Ethernet interface but only one link is allowed between two
unique interfaces, for instance, interface A can have two links to interface B and C but A cannot have two
links to interface B.

Notes

In the future, linx_create_eth_link() and linx_destroy_eth_link() will be replaced by two generic function
calls, linx_create_link() and linx_destroy_link().

Example

In this example a link is created to nodeB.

#include <linx.h>
#include <linxcfg.h>
int
main(int argc, char *argv[]) {
 int rv;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 /* Create a link to the ethernet interface with the MAC
 * address of 00:01:02:03:04:05, use the local interface
 * eth0 for the link and default values for all parameters. */
 rv = linx_create_eth_link("link_to_nodeB", "00:01:02:03:04:05", "eth0",
0, 0, 0, 0, 0, 0);
 if(rv != 0) {

 /* Link was not created */
 return -1;

 }
 /* Link was created, now we can use the link. */
 /* Open a LINX endpoint */
 linx = linx_open("myproc", 0, NULL);
 /* Hunt for process hisproc over the link */

LINX_CREATE_ETH_LINK(3) manual page

Return Value 40

 linx_hunt(linx, "link_to_nodeB/hisproc", NULL);
 /* This hunt will resolve first AFTER the other side has
 * done a linx_create_eth_link to us! */
 linx_receive(linx, &sig, sel_hunt_sig);
 linx_close(linx);
 /* Destroy the link */
 rv = linx_destroy_eth_link("link_to_nodeB");
}

See Also

linx(7) , linx_create_tcp_link(3) , linx_destroy_tcp_link(3)

Author

Enea LINX team

LINX_CREATE_ETH_LINK(3) manual page

Example 41

LINX_CREATE_TCP_LINK(3) manual page

Name

linx_create_tcp_link() - creates a TCP link
linx_destroy_tcp_link() - destroys a TCP link

Synopsis

#include <linxcfg.h>

int linx_create_tcp_link(char *name, char *ip_addr, unsigned long live_tmo, unsigned long use_nagle,
char *attributes);

int linx_destroy_tcp_link(char *name);

Description

The calls linx_create_tcp_link() and linx_destroy_tcp_link() respectively create and destroy TCP links. A
link is considered up when both sides have done linx_create_tcp_link() to each others TCP port. A link is
identified by its name which is assigned by the parameter name. The name is local to the node so different
nodes can have the same name to the same remote interface. The IP address to the remote interface is given in
ip_addr in the form of a character string, i.e. "192.168.1.1".

The following options are not mandatory. If 0 is given, default values will be used.

The send_tmo timeout specifies the time to wait until unacked messages are resent (in msec). Default timeout
is 10msec and it should be sufficient for most systems.

In the use_nagle parameter a non zero value specifies that the nagle algorithm should be used on the socket
for the connection. The default is off.

The attributes option gives the possibility to assign an arbitrary string to the link when it is created. This
string is included in the new_link signal,

which is sent to all link supervisors

Return Value

Returns zero if successful, otherwise -1 is returned and errno is set.

Errors

EINVAL if name is NULL, or if ip_addr is NULL or has an invalid IP address.

ENOBUFS or ENOMEM if there is not enough memory.

EPROTONOSUPPORT or EAFNOSUPPORT if linx(7) is not supported by the system.

LINX_CREATE_TCP_LINK(3) manual page

LINX_CREATE_TCP_LINK(3) manual page 42

ENFILE Not enough kernel memory to allocate a new LINX socket.

EMFILE Process file table overflow.

EACCES Permission to create a LINX socket is denied.

Bugs/Limitations

Several links can be created to and from a TCP peer but only one link is allowed between two unique peers,
for instance, interface A can have two links: one to peer B and the other to C, but A cannot have two links to
peer B.

Notes

In the future, linx_create_tcp_link() and linx_destroy_tcp_link() will be replaced by two generic function
calls, linx_create_link() and linx_destroy_link().

Example

In this example a link is created to nodeB.

#include <linx.h>
#include <linxcfg.h>
int
main(int argc, char *argv[]) {
 int rv;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 /* Create a link to the ethernet interface with the IP address
 * address 192.168.1.1, and use the default values for all
 * parameters */
 rv = linx_create_tcp_link("link_to_nodeB", "192.168.1.1", 0, 0, NULL);
 if(rv != 0) {

 /* Link was not created */
 return -1;

 }
 /* Link was created, now we can use the link. */
 /* Open a LINX endpoint */
 linx = linx_open("myproc", 0, NULL);
 /* Hunt for process hisproc over the link */
 linx_hunt(linx, "link_to_nodeB/hisproc", NULL);
 /* This hunt will resolve first AFTER the other side has
 * done a linx_create_tcp_link to us! */
 linx_receive(linx, &sig, sel_hunt_sig);
 linx_close(linx);
 /* Destroy the link */
 rv = linx_destroy_tcp_link("link_to_nodeB");
}

See Also

linx(7) , linx_create_eth_link(3) , linx_destroy_eth_link(3)

LINX_CREATE_TCP_LINK(3) manual page

Errors 43

Author

Enea LINX team

LINX_CREATE_TCP_LINK(3) manual page

Author 44

LINX_DESTROY_ETH_LINK(3) manual page

Name

linx_create_eth_link() - creates an Ethernet link
linx_destroy_eth_link() - destroys an Ethernet link

Synopsis

#include <linxcfg.h>

int linx_create_eth_link(char *name, char *mac, char *ifc, unsigned long window_size, unsigned long
defer_queue_size, unsigned long send_tmo, unsigned long nack_tmo, unsigned long conn_tmo, unsigned
long live_tmo);

int linx_destroy_eth_link(char *name);

Description

The calls linx_create_eth_link() and linx_destroy_eth_link() creates and destroys links between two unique
Ethernet interfaces that are present in the same subnet. A link is considered up when both sides have done
linx_create_eth_link() to each others Ethernet interfaces. A link is identified by its name which is assigned
by the parameter name. The name is local to the node so different nodes can have the same name to the same
remote interface. The MAC address to the remote interface is given in mac in the form of a character string,
i.e. "00:10:4A:0F:AB:00". The ifc parameter is used to specify which interface the link shall use.

The following options are not mandatory. If 0 is given, default values will be used.

The send and receive sliding window size is set by window_size, the window size shall always be of a power
of 2. Default window size is 128 and it should be sufficient for most configurations. Both sides must use the
same window_size.

A defer queue is used on the sender side when the send window is full, every message sent when the send
window is full is stored in a defer queue until the send window has room for more messages. The defer_queue
parameter specifies the maximum number of messages that can be stored in the defer queue before the link is
disconnected due to lack of resources. The default size is 2048 and it should be sufficient for most systems.

The send_tmo timeout specifies the time to wait until unacked messages are resent (in msec). Default timeout
is 10msec and it should be sufficient for most systems.

The nack_tmo timeout specifies the time to wait until nack messages are resent (in msec). The default timeout
of 20msec should be sufficient for most systems.

The conn_tmo timeout specifies the time to wait (in msec) until the establishment of a connection is
considered failed. The default value of 200msec should be sufficient in most systems.

The live_tmo parameter specifies the time to wait until a connection is considered broken. The default timeout
of 100msec (when the system is not idle) should be sufficient for most systems. When the system is idle, the
live timeout is ten times larger than the configured live timeout value.

LINX_DESTROY_ETH_LINK(3) manual page

LINX_DESTROY_ETH_LINK(3) manual page 45

Return Value

Returns zero if successful, otherwise -1 is returned and errno is set.

Errors

EINVAL if name, mac or ifc are NULL.

ENOBUFS or ENOMEM if there is not enough memory.

EPROTONOSUPPORT or EAFNOSUPPORT if linx(7) is not supported by the system.

ENFILE Not enough kernel memory to allocate a new LINX socket.

EMFILE Process file table overflow.

EACCES Permission to create a LINX socket is denied.

Bugs/Limitations

Several links can be created to and from an Ethernet interface but only one link is allowed between two
unique interfaces, for instance, interface A can have two links to interface B and C but A cannot have two
links to interface B.

Notes

In the future, linx_create_eth_link() and linx_destroy_eth_link() will be replaced by two generic function
calls, linx_create_link() and linx_destroy_link().

Example

In this example a link is created to nodeB.

#include <linx.h>
#include <linxcfg.h>
int
main(int argc, char *argv[]) {
 int rv;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 /* Create a link to the ethernet interface with the MAC
 * address of 00:01:02:03:04:05, use the local interface
 * eth0 for the link and default values for all parameters. */
 rv = linx_create_eth_link("link_to_nodeB", "00:01:02:03:04:05", "eth0",
0, 0, 0, 0, 0, 0);
 if(rv != 0) {

 /* Link was not created */
 return -1;

 }
 /* Link was created, now we can use the link. */
 /* Open a LINX endpoint */
 linx = linx_open("myproc", 0, NULL);
 /* Hunt for process hisproc over the link */

LINX_DESTROY_ETH_LINK(3) manual page

Return Value 46

 linx_hunt(linx, "link_to_nodeB/hisproc", NULL);
 /* This hunt will resolve first AFTER the other side has
 * done a linx_create_eth_link to us! */
 linx_receive(linx, &sig, sel_hunt_sig);
 linx_close(linx);
 /* Destroy the link */
 rv = linx_destroy_eth_link("link_to_nodeB");
}

See Also

linx(7) , linx_create_tcp_link(3) , linx_destroy_tcp_link(3)

Author

Enea LINX team

LINX_DESTROY_ETH_LINK(3) manual page

Example 47

LINX_DESTROY_TCP_LINK(3) manual page

Name

linx_create_tcp_link() - creates a TCP link
linx_destroy_tcp_link() - destroys a TCP link

Synopsis

#include <linxcfg.h>

int linx_create_tcp_link(char *name, char *ip_addr, unsigned long live_tmo, unsigned long use_nagle,
char *attributes);

int linx_destroy_tcp_link(char *name);

Description

The calls linx_create_tcp_link() and linx_destroy_tcp_link() respectively create and destroy TCP links. A
link is considered up when both sides have done linx_create_tcp_link() to each others TCP port. A link is
identified by its name which is assigned by the parameter name. The name is local to the node so different
nodes can have the same name to the same remote interface. The IP address to the remote interface is given in
ip_addr in the form of a character string, i.e. "192.168.1.1".

The following options are not mandatory. If 0 is given, default values will be used.

The send_tmo timeout specifies the time to wait until unacked messages are resent (in msec). Default timeout
is 10msec and it should be sufficient for most systems.

In the use_nagle parameter a non zero value specifies that the nagle algorithm should be used on the socket
for the connection. The default is off.

The attributes option gives the possibility to assign an arbitrary string to the link when it is created. This
string is included in the new_link signal,

which is sent to all link supervisors

Return Value

Returns zero if successful, otherwise -1 is returned and errno is set.

Errors

EINVAL if name is NULL, or if ip_addr is NULL or has an invalid IP address.

ENOBUFS or ENOMEM if there is not enough memory.

EPROTONOSUPPORT or EAFNOSUPPORT if linx(7) is not supported by the system.

LINX_DESTROY_TCP_LINK(3) manual page

LINX_DESTROY_TCP_LINK(3) manual page 48

ENFILE Not enough kernel memory to allocate a new LINX socket.

EMFILE Process file table overflow.

EACCES Permission to create a LINX socket is denied.

Bugs/Limitations

Several links can be created to and from a TCP peer but only one link is allowed between two unique peers,
for instance, interface A can have two links: one to peer B and the other to C, but A cannot have two links to
peer B.

Notes

In the future, linx_create_tcp_link() and linx_destroy_tcp_link() will be replaced by two generic function
calls, linx_create_link() and linx_destroy_link().

Example

In this example a link is created to nodeB.

#include <linx.h>
#include <linxcfg.h>
int
main(int argc, char *argv[]) {
 int rv;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 /* Create a link to the ethernet interface with the IP address
 * address 192.168.1.1, and use the default values for all
 * parameters */
 rv = linx_create_tcp_link("link_to_nodeB", "192.168.1.1", 0, 0, NULL);
 if(rv != 0) {

 /* Link was not created */
 return -1;

 }
 /* Link was created, now we can use the link. */
 /* Open a LINX endpoint */
 linx = linx_open("myproc", 0, NULL);
 /* Hunt for process hisproc over the link */
 linx_hunt(linx, "link_to_nodeB/hisproc", NULL);
 /* This hunt will resolve first AFTER the other side has
 * done a linx_create_tcp_link to us! */
 linx_receive(linx, &sig, sel_hunt_sig);
 linx_close(linx);
 /* Destroy the link */
 rv = linx_destroy_tcp_link("link_to_nodeB");
}

See Also

linx(7) , linx_create_eth_link(3) , linx_destroy_eth_link(3)

LINX_DESTROY_TCP_LINK(3) manual page

Errors 49

Author

Enea LINX team

LINX_DESTROY_TCP_LINK(3) manual page

Author 50

LINX_DETACH(3) manual page

Name

linx_attach() - Attach to and supervise a LINX endpoint
linx_detach() - Detach from an attached LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSATTREF linx_attach(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID spid);

int linx_detach(LINX *linx, LINX_OSATTREF *attref);

Description

linx_attach() is used to supervise another LINX endpoint. When the other endpoint is closed or becomes
unavailable, an attach signal is sent to the supervising LINX endpoint linx as a notification. If a signal sig is
provided, this signal will be received when the attach is triggered. If sig is NULL, the default LINX attach
signal with signal number LINX_OS_ATTACH_SIG is received instead. The linx_attach() call consumes the
signal, taking over its ownership, and sets the sig pointer to LINX_NIL. The signal is consumed if an error
occurs too. If sig is corrupt, abort(3) is called.

linx_detach() is used to detach from an attached LINX endpoint. It's an error to detach from a LINX endpoint
more than once or to detach from a LINX endpoint after the attach signal has been received. It is not an error
to detach if the attach signal is waiting in the receive queue of the LINX endpoint. To prevent multiple
detaches, linx_detach() sets the attref pointer to LINX_ILLEGAL_ATTREF.

linx is the handle of the LINX endpoint.

spid is the identifier of the LINX endpoint to supervise.

sig is either NULL or a user defined LINX signal.

attref is the LINX_OSATTREF attach reference obtained from linx_attach().

Return Value

linx_attach() returns an attach reference (LINX_OSATTREF) when successful. This attach reference can be
used to cancel the attach (detach) after the attach is done. linx_detach() returns 0 on success.

On failure, linx_attach() returns LINX_ILLEGAL_ATTREF and linx_detach() returns -1, and errno is set
appropriately.

Errors

EBADF, ENOTSOCK The linx handle refers to an invalid socket descriptor.

LINX_DETACH(3) manual page

LINX_DETACH(3) manual page 51

Bugs/Limitations

None.

Example

In this example the server attaches to the client and tells the client to exit and waits for the attach signal.

Server:
#include <linx.h>
#define CLIENT_DONE_SIG 0x1234
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 const LINX_SIGSELECT sel_att_sig [] = { 1, LINX_OS_ATTACH_SIG };
 /* Create a LINX endpoint with huntname "attacher" */
 linx = linx_open("attacher", NULL, 0);
 /* Hunt for the client */
 linx_hunt(linx, "client", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, sel_hunt_sig);
 /* Retrive the clients spid */
 client = linx_sender(linx, &sig)
 /* Free the hunt signal */
 linx_free_buf(linx, &sig);
 /* Attach to the client */
 linx_attach(linx, client, NULL);
 /* Create "done" signal */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), CLIENT_DONE_SIG);
 /* Send "done" signal to client */
 linx_send(linx, &sig, client);
 /* Wait for the attach signal */
 linx_receive(linx, &sig, sel_att_sig);
 /* Close the LINX endpoint */
 linx_close(linx);
 return 0;
}
Client:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_done_sig[] = { 1, CLIENT_DONE_SIG };

 /* Open a LINX endpoint with huntname "client" */
 linx = linx_open("client", NULL, 0);
 /* Wait for server to send "done" signal */
 linx_receive(linx, &sig, sel_done_sig);
 /* Close the LINX endpoint - this will trigger the attach */
 linx_close(linx);
 return 0;
}

LINX_DETACH(3) manual page

Bugs/Limitations 52

See Also

linx(7) , linx_attach(3) , linx_close(3) , linx_detach(3) , linx_hunt(3) , linx_send(3)

Author

Enea LINX team

LINX_DETACH(3) manual page

See Also 53

LINXDISC(8) manual page

Name

linxdisc - The LINX discovery daemon

Synopsis

linxdisc [-d] [-c config-file] [-r retries]

Description

linxdisc is the LINX discovery daemon, which automatically detects and creates connections (links) to other
remote LINX nodes, which also is running linxdisc. The daemon periodically sends advertisements and waits
for advertisements from remote nodes. The period is about 3 seconds. Connections are created to allowed
remote nodes, when advertisements are received.

See the configuration file linxdisc.conf(5) for filter rules, limiting which interfaces to use and which remote
nodes to allow. Communication links are only allowed to remote nodes which advertise the same LINX
network cluster name as configured and with a node name fulfilling the configured allow/deny rules. The
configured LINX cluster name and node name are used in advertisements sent from this node. The cluster
name and node name must be unique.

The advertised node name is the suggested linkname to use for links to the advertised node. The linkname is
used in huntname paths by applications in other nodes, when they hunt for LINX endpoints in this node.

linxdisc must be run as root and there can only be one instance of linxdisc running on each node. When
linxdisc catches a SIGHUP, the configuration will be reread. Use SIGTERM to terminate linxdisc. When
linxdisc terminates, all connections are automatically destroyed.

The linxdisc protocol is described in detail in the Linx Protocol document (see http://linx.sourceforge.net).

Options

-d
Run in debug mode. The program is interactive, not run as a daemon, and all progress and activity is
logged to standard error.

-c config-file
Use config-file instead of the default configuration file /etc/linxdisc.conf.

Files

/etc/linxdisc.conf

The default configuration file. See linxdisc.conf(5) for further details.

Diagnostics

linxdisc writes all activity and errors to the syslog, unless the -d option was given.

LINXDISC(8) manual page

LINXDISC(8) manual page 54

Known Bugs and Limitations

linxdisc cannot apply parameters such as timeouts etc when creating links. Interfaces that are unavailable
when starting linxdisc will not be used when they become available, linxdisc has to be restarted in that case.

See Also

linx(7) , linx_hunt(3) , linxdisc.conf(5)

Author

Enea LINX team

LINXDISC(8) manual page

Known Bugs and Limitations 55

LINXDISC.CONF(5) manual page

Name

linxdisc.conf - custom settings for linxdisc

Synopsis

/etc/linxdisc.conf

Description

This file contains configuration variables for the linxdisc daemon. For non-configured variables, default
values are used.

The linxdisc.conf must be located in the /etc directory, unless specified when linxdisc is started.

The variables are set using this semantics: VALUE="value1 value2 ..."

When the linxdisc daemon catches a SIGHUP, the configuration will be reread. IFACE,
LINX_NETWORK_NAME and NODE_NAME will not be changed during runtime, while ALLOW and
DENY will be applied immediately to close disallowed connections and when creating new connections.

Variables

IFACE
specifies what network interface(s) to use. Only real devices are supported. Several interfaces can be
specified. e.g. IFACE="eth0 eth1". Default is to use all available devices.

LINX_NETWORK_NAME
specifies the name of a LINX cluster. linxdisc only creates LINX communication links to nodes,
advertising the same cluster name. All nodes must have the linxdisc daemon running. Default is the
cluster name "undefined".

NODE_NAME
specifies a node name to advertise. It is used by other nodes to filter against the allow/deny filter
chains. It is also used as the recommended local link name, when linxdisc in a remote node creates
LINX communication links to this node, as a response to the advertisement. Default node name is the
hostname. Example: NODE_NAME="server1".

ALLOW
chain. If specified, linxdisc will only accept connections to nodes with the specified advertised node
names. Names are given in a string, separated by spaces. This variable can be set several times in the
configuration file and the names will be concatenated to one ALLOW chain. Example:
ALLOW="node1 node2".

DENY
chain. NOTE: This setting will not have any effect if ALLOW is set. If DENY is specified instead of
ALLOW, linxdisc will allow LINX connections to any node, except those with advertised node names
listed here. Names are given in a string, separated by spaces. This variable can be set several times in
the configuration file and the names will be concatenated to one DENY chain.

PARAM
List of parameters to apply to all links created by linxdisc. For a description of parameters and
allowed values, see linxcfg(1) . This variable can be set several times in this file and the specified
parameters are concatenated to one PARAM chain.

LINXDISC.CONF(5) manual page

LINXDISC.CONF(5) manual page 56

See Also

linxdisc(8)

Author

Enea LINX team

LINXDISC.CONF(5) manual page

See Also 57

LINX_FREE_BUF(3) manual page

Name

linx_free_buf() - Free a signal buffer owned by a LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_free_buf(LINX *linx, union LINX_SIGNAL **sig);

Description

Free a signal buffer, owned by the LINX endpoint, associated with the linx handle. Once the buffer is freed it
may not be accessed again. To be owned by this LINX endpoint, the buffer has either been received by or
allocated at this endpoint.

linx is the handle to the LINX endpoint, owning the sig signal buffer.

sig is the signal buffer. When the call returns, the pointer (*sig) is set to LINX_NIL to prevent further access.

If sig is corrupt, abort(3) is called.

Return Value

On success, 0 is returned. The function does not return on error.

Bugs/Limitations

None.

See Also

linx(7) , linx_alloc(3) , linx_open(3) , linx_receive(3) ,

Author

Enea LINX team

LINX_FREE_BUF(3) manual page

LINX_FREE_BUF(3) manual page 58

LINX_FREE_NAME(3) manual page

Name

linx_get_name() - Get the name of another LINX endpoint
linx_free_name() - Free the name returned by linx_get_name(3)

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_get_name(LINX *linx, LINX_SPID spid, char **name);

int linx_free_name(LINX *linx, char **name);

Description

Get the full hunt name of the LINX endpoint associated with the spid binary identifier (spid). The hunt name
is a string which may include a path of link names if the LINX endpoint is located on a remote node, e.g.
"LinkToA/LinkToB/LinkToC/EndpointName".

linx is the handle of the own LINX endpoint.

spid is the spid of the LINX endpoint for which the name is requested.

name is a pointer to a hunt name buffer on successful return, otherwise NULL. Unless name is NULL on
return, the name buffer must be freed with linx_free_name(3) , when it is no longer needed.

Return Value

On success, 0 is returned and name contains a pointer to a buffer containing the huntname. The user is
responsible for freeing the buffer with linx_free_name(3) .
In case of failure, -1 will be returned by both calls errno will be set.

Errors

EBADF The linx handle refers to an invalid socket descriptor.

EINVAL The name parameter is NULL.

ENOMEM Insufficient memory is available.

Bugs/Limitations

None.

LINX_FREE_NAME(3) manual page

LINX_FREE_NAME(3) manual page 59

See Also

linx(7) , linx_open(3) , malloc(3) , free(3)

Author

Enea LINX team

LINX_FREE_NAME(3) manual page

See Also 60

LINX_FREE_STAT(3) manual page

Name

linx_get_stat() - Get the statistics of a LINX endpoint
linx_free_stat() - Free the statistics struct returned by linx_get_stat(3)

Synopsis

#include <linx_types.h>
#include <linx_ioctl.h>
#include <linx.h>

int linx_get_stat(LINX *linx, LINX_SPID spid, struct linx_info_stat **stat);

int linx_free_stat(LINX *linx, struct linx_info_stat **stat);

Description

Get the statistics of the LINX endpoint, associated with the local spid binary identifier if the LINX kernel
module is compiled with SOCK_STAT=yes.

linx is the handle to the LINX endpoint, which is used to retrive the statistics.

spid is the identifier of the other LINX endpoint, for which the statistics is requested.

stat will on return point to an struct linx_info_stat buffer contining the statistics. Unless returned as NULL,
the buffer must be freed by the user with linx_free_stat(3) , when no longer needed. For details on the
linx_info_stat struct see linx(7) .

Return Value

Returns 0 if successful, for linx_get_stat(3) the stat will contain a pointer to a buffer, allocated by LINX,
containing the statistics. The user is responsible for freeing the buffer with linx_free_stat(3) .
In case of failure, -1 will be returned and errno will be set.

Errors

ENOSYS if the LINX kernel module has not been compiled with SOCK_STAT=yes.

ENOMEM Insufficient memory is available.

EBADF The linx handle is associated with an invalid socket descriptor.

Bugs/Limitations

None.

LINX_FREE_STAT(3) manual page

LINX_FREE_STAT(3) manual page 61

See Also

linx(7) , linx_open(3)

Author

Enea LINX team

LINX_FREE_STAT(3) manual page

See Also 62

LINX_GET_DESCRIPTOR(3) manual page

Name

linx_get_descriptor() - Get the socket descriptor associated with a LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_get_descriptor(LINX *linx);

Description

The linx_get_descriptor() call returns the socket descriptor associated with a LINX endpoint. This socket
descriptor is usually not needed when using the LINX API.

The LINX socket descriptor must be used if the application wants to use the generic select(2) or poll(2) calls.
The application can then use LINX API function calls with the corresponding LINX endpoint handle to take
care of events reported for a LINX socket descriptor. Alternatively, the LINX socket interface can be used.

linx is the handle of the LINX endpoint for which the socket descriptor is retrieved.

Return Value

Returns a socket descriptor.

Bugs/Limitations

None.

Notes

A LINX socket descriptor retrieved by linx_get_descriptor(3) must NOT be closed by calling close(2) .
Close the LINX endpoint instead using linx_close(3) .

See Also

linx(7) , linx_close(3) ,linx_open(3) , select(2) , poll(2)

Author

Enea LINX team

LINX_GET_DESCRIPTOR(3) manual page

LINX_GET_DESCRIPTOR(3) manual page 63

LINX_GET_NAME(3) manual page

Name

linx_get_name() - Get the name of another LINX endpoint
linx_free_name() - Free the name returned by linx_get_name(3)

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_get_name(LINX *linx, LINX_SPID spid, char **name);

int linx_free_name(LINX *linx, char **name);

Description

Get the full hunt name of the LINX endpoint associated with the spid binary identifier (spid). The hunt name
is a string which may include a path of link names if the LINX endpoint is located on a remote node, e.g.
"LinkToA/LinkToB/LinkToC/EndpointName".

linx is the handle of the own LINX endpoint.

spid is the spid of the LINX endpoint for which the name is requested.

name is a pointer to a hunt name buffer on successful return, otherwise NULL. Unless name is NULL on
return, the name buffer must be freed with linx_free_name(3) , when it is no longer needed.

Return Value

On success, 0 is returned and name contains a pointer to a buffer containing the huntname. The user is
responsible for freeing the buffer with linx_free_name(3) .
In case of failure, -1 will be returned by both calls errno will be set.

Errors

EBADF The linx handle refers to an invalid socket descriptor.

EINVAL The name parameter is NULL.

ENOMEM Insufficient memory is available.

Bugs/Limitations

None.

LINX_GET_NAME(3) manual page

LINX_GET_NAME(3) manual page 64

See Also

linx(7) , linx_open(3) , malloc(3) , free(3)

Author

Enea LINX team

LINX_GET_NAME(3) manual page

See Also 65

LINX_GET_SPID(3) manual page

Name

linx_get_spid() - Get the binary identifier of LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_SPID linx_get_spid(LINX *linx);

Description

Get the binary identifier (spid) of the LINX endpoint referred to by the linx LINX handle.

Return Value

Returns the spid.

Bugs/Limitations

None.

See Also

linx(7) , linx_open(3)

Author

Enea LINX team

LINX_GET_SPID(3) manual page

LINX_GET_SPID(3) manual page 66

LINX_GET_STAT(3) manual page

Name

linx_get_stat() - Get the statistics of a LINX endpoint
linx_free_stat() - Free the statistics struct returned by linx_get_stat(3)

Synopsis

#include <linx_types.h>
#include <linx_ioctl.h>
#include <linx.h>

int linx_get_stat(LINX *linx, LINX_SPID spid, struct linx_info_stat **stat);

int linx_free_stat(LINX *linx, struct linx_info_stat **stat);

Description

Get the statistics of the LINX endpoint, associated with the local spid binary identifier if the LINX kernel
module is compiled with SOCK_STAT=yes.

linx is the handle to the LINX endpoint, which is used to retrive the statistics.

spid is the identifier of the other LINX endpoint, for which the statistics is requested.

stat will on return point to an struct linx_info_stat buffer contining the statistics. Unless returned as NULL,
the buffer must be freed by the user with linx_free_stat(3) , when no longer needed. For details on the
linx_info_stat struct see linx(7) .

Return Value

Returns 0 if successful, for linx_get_stat(3) the stat will contain a pointer to a buffer, allocated by LINX,
containing the statistics. The user is responsible for freeing the buffer with linx_free_stat(3) .
In case of failure, -1 will be returned and errno will be set.

Errors

ENOSYS if the LINX kernel module has not been compiled with SOCK_STAT=yes.

ENOMEM Insufficient memory is available.

EBADF The linx handle is associated with an invalid socket descriptor.

Bugs/Limitations

None.

LINX_GET_STAT(3) manual page

LINX_GET_STAT(3) manual page 67

See Also

linx(7) , linx_open(3)

Author

Enea LINX team

LINX_GET_STAT(3) manual page

See Also 68

LINX.H(3) manual page

Name

linx.h - The LINX API

Synopsis

#include <linx.h>

Description

This is the main header file for applications using the LINX library. This library provides functions to handle
communication between LINX endpoints using a messaging API.
Inclusion of the <linx.h> header may also make all symbols from <stdint.h> , <sys/types.h> and
<linx_types.h> visible.

The linx_open() function creates a LINX endpoint and returns a handle that should be used in all other LINX
API calls.

LINX *linx_open(const char *name, uint32_t options, void *arg);

int linx_close(LINX *linx);

int linx_get_descriptor(LINX *linx);

union LINX_SIGNAL *linx_alloc(LINX *linx, LINX_OSBUFSIZE size, LINX_SIGSELECT sig_no);

int linx_free_buf(LINX *linx, union LINX_SIGNAL **sig);

int linx_send(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID to);

int linx_send_w_opt(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to,
int32_t *taglist);

int linx_send_w_s(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to);

int linx_receive(LINX *linx, union LINX_SIGNAL **sig, const LINX_SIGSELECT *sig_sel);

int linx_receive_w_tmo(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel);

int linx_receive_from(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel, LINX_SPID from);

LINX_SPID linx_sender(LINX *linx, union LINX_SIGNAL **sig);

int linx_sigattr(const LINX *linx, const union LINX_SIGNAL **sig, uint32_t attr, void **value);

LINX_OSBUFSIZE linx_sigsize(LINX *linx, union LINX_SIGNAL **sig);

int linx_set_sigsize(LINX *linx, union LINX_SIGNAL **sig, LINX_OSBUFSIZE sigsize);

LINX.H(3) manual page

LINX.H(3) manual page 69

int linx_hunt(LINX *linx, const char *name, union LINX_SIGNAL **hunt_sig);

int linx_hunt_from(LINX *linx, const char *name, union LINX_SIGNAL **hunt_sig, LINX_SPID
from);

LINX_OSATTREF linx_attach(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID spid);

int linx_detach(LINX *linx, LINX_OSATTREF *attref);

LINX_SPID linx_get_spid(LINX *linx);

int linx_get_name(LINX *linx, LINX_SPID spid, char **name);

int linx_free_name(LINX *linx, char **name);

int linx_get_stat(LINX *linx, LINX_SPID spid, struct linx_info_stat **stat);

int linx_free_stat(LINX *linx, struct linx_info_stat **stat);

LINX_OSTMOREF linx_request_tmo(LINX *linx, LINX_OSTIME tmo, union LINX_SIGNAL **sig);

int linx_cancel_tmo(LINX *linx, LINX_OSTMOREF *tmoref);

int linx_modify_tmo(LINX *linx, LINX_OSTMOREF *tmoref, LINX_OSTIME tmo);

LINX_NLREF linx_request_new_link(LINX *linx, LINX_NLTOKEN token);

int linx_cancel_new_link(LINX *linx, LINX_NLREF * nlref);

Future Directions

The LINX API is still under development and may be subject to change in future releases.

Known Bugs

None.

Author

Enea LINX team

See Also

linx(7) , linx_open(3) , linx_types.h(3) , linx_close(3) , linx_get_descriptor(3) , linx_alloc(3) ,
linx_free_buf(3) , linx_send(3) , linx_send_w_opt(3) , linx_send_w_s(3) , linx_receive(3) ,
linx_receive_w_tmo(3) , linx_receive_from(3) , linx_sender(3) , linx_sigattr(3) , linx_sigsize(3) ,
linx_set_sigsize(3) , linx_hunt(3) , linx_hunt_from(3) , linx_attach(3) , linx_detach(3) , linx_get_spid(3) ,
linx_get_name(3) , linx_free_name(3) , linx_get_stat(3) , linx_free_stat(3) , linx_request_tmo(3) ,
linx_modify_tmo(3) , linx_cancel_tmo(3) , linx_request_new_link(3) , linx_cancel_new_link(3)

LINX.H(3) manual page

Description 70

LINX_HUNT(3) manual page

Name

linx_hunt() - Search for a LINX endpoint matching a name

linx_hunt_from() - Search for a LINX endpoint matching a name and set another LINX endpoint to be the
owner of the hunt.

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_hunt(LINX *linx, const char *name, union LINX_SIGNAL **hunt_sig);

int linx_hunt_from(LINX *linx, const char *name, union LINX_SIGNAL **hunt_sig, LINX_SPID
from);

Description

linx_hunt() and linx_hunt_from() are used to search for a LINX endpoint matching the provided hunt name,
usually in order to be able to obtain its spid and communicate with it. The hunt name may optionally be
prepended by a path of link names to reach a remote node on which the endpoint shall be found. When the
endpoint has been found, the provided signal hunt_sig is sent from the found endpoint to the calling endpoint.
If no hunt signal (NULL) is provided, the default LINX hunt signal of type LINX_OS_HUNT_SIG is used.
The call consumes the signal, taking ownership of the signal, and sets the hunt_sig pointer to LINX_NIL to
prevent further access. The signal is consumed also if an error occurs.

If there are multiple endpoints with the same name, it is not specified which of these endpoints is used to
resolve the hunt call. When the hunt signal is received, the linx_sender(3) call can be used to get the spid of
the found endpoint. Note that the returned spid is always local even though it may correspond to a LINX
endpoint on a remote node. LINX will transparently route signals to their intended destination endpoints on
remote nodes when needed.

A pending hunt will be automatically cancelled if the linx endpoint that owns it is closed, e.g. if the caller
exits. In the case with linx_hunt_from(), the from parameter indicates a different owner of the pending hunt.
If the from endpoint is closed while the hunt is pending, the hunt will be freed. Note that from does NOT
receive the hunt signal.

name is a null-terminated string that shall exactly match a LINX endpoints name. If the endpoint is located on
a remote node, the name of a link to that node (or names in a sequence of links) shall be included as the
leading part of the name according to the following syntax:
"[<link_1>/][<link_2>/]...[<link_N>/]name"
Example: "LinkToA/LinkToB/EndpointName" where a path of two links are passed to reach the LINX
endpoint.

linx is the handle to the LINX endpoint that will receive the hunt signal.

hunt_sig is the signal which will be sent to the caller when the hunt has been resolved. The sender of the
signal will be the matching LINX endpoint found. If hunt_sig is NULL, a default LINX hunt signal with
signal number LINX_OS_HUNT_SIG will be sent instead. If hunt_sig is corrupt, abort(3) is called.

LINX_HUNT(3) manual page

LINX_HUNT(3) manual page 71

from specifies a different owner of a possible pending hunt. If the endpoint, with spid from, is closed, the
pending hunt will be cancelled.

Return Value

Returns 0 if successful. -1 if an error occurred in which case errno is set.

Errors

ENOMEM Insufficient memory is available.

EBADF The linx handle refers to an invalid socket descriptor.

EFAULT The .I name parameter is invalid.

ECONNRESET The from spid in the linx_hunt_from(3) refers to a LINX endpoint that has been closed (i.e.
in state LINX_ZOMBIE).

EPIPE This error is reported at an attempt to do a linx_hunt_from(3) and the from spid is a LINX endpoint
that is being closed as the call occurs.

Bugs/Limitations

None.

Example

In this example client1 hunts for client2 and client3 */

Client 1:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client2, client3;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 /* Open a LINX endpoint with huntname "client1" */
 linx = linx_open("client1", NULL, 0);
 /* Hunt for client2 */
 linx_hunt(linx, "client2", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, sel_hunt_sig);
 /* Retrieve client2's spid */
 client2 = linx_sender(linx, &sig);
 /* Free the hunt signal */
 linx_free_buf(linx, &sig);
 /* Hunt for client3 */
 linx_hunt(linx, "client3", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, sel_hunt_sig);
 /* Retrieve client3's spid */
 client3 = linx_sender(linx, &sig);
 /* Free the hunt signal */

LINX_HUNT(3) manual page

Description 72

 linx_free_buf(linx, &sig);
 /* Do work, e.g. exchanges signals with client2 or client3 ... */
 /* Close the LINX endpoint */
 linx_close(linx);
 return 0;
}
Client 2:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 /* Open a LINX endpoint with huntname "client2" */
 linx = linx_open("client2", NULL, 0);
 /* Do work.... */
 /* When done close the LINX endpoint */
 linx_close(linx);
 /* "client2" can no longer be hunted on */
 return 0;
}
Client 3:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 /* Open a LINX endpoint with huntname "client3" */
 linx = linx_open("client3", NULL, 0);
 /* Do work.... */
 /* When done close the LINX endpoint */
 linx_close(linx);
 /* "client3" can no longer be hunted on */
 return 0;
}

See Also

linx(7) , linx_attach(3) , linx_sender(3)

Author

Enea LINX team

LINX_HUNT(3) manual page

Example 73

LINX_HUNT_FROM(3) manual page

Name

linx_hunt() - Search for a LINX endpoint matching a name

linx_hunt_from() - Search for a LINX endpoint matching a name and set another LINX endpoint to be the
owner of the hunt.

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_hunt(LINX *linx, const char *name, union LINX_SIGNAL **hunt_sig);

int linx_hunt_from(LINX *linx, const char *name, union LINX_SIGNAL **hunt_sig, LINX_SPID
from);

Description

linx_hunt() and linx_hunt_from() are used to search for a LINX endpoint matching the provided hunt name,
usually in order to be able to obtain its spid and communicate with it. The hunt name may optionally be
prepended by a path of link names to reach a remote node on which the endpoint shall be found. When the
endpoint has been found, the provided signal hunt_sig is sent from the found endpoint to the calling endpoint.
If no hunt signal (NULL) is provided, the default LINX hunt signal of type LINX_OS_HUNT_SIG is used.
The call consumes the signal, taking ownership of the signal, and sets the hunt_sig pointer to LINX_NIL to
prevent further access. The signal is consumed also if an error occurs.

If there are multiple endpoints with the same name, it is not specified which of these endpoints is used to
resolve the hunt call. When the hunt signal is received, the linx_sender(3) call can be used to get the spid of
the found endpoint. Note that the returned spid is always local even though it may correspond to a LINX
endpoint on a remote node. LINX will transparently route signals to their intended destination endpoints on
remote nodes when needed.

A pending hunt will be automatically cancelled if the linx endpoint that owns it is closed, e.g. if the caller
exits. In the case with linx_hunt_from(), the from parameter indicates a different owner of the pending hunt.
If the from endpoint is closed while the hunt is pending, the hunt will be freed. Note that from does NOT
receive the hunt signal.

name is a null-terminated string that shall exactly match a LINX endpoints name. If the endpoint is located on
a remote node, the name of a link to that node (or names in a sequence of links) shall be included as the
leading part of the name according to the following syntax:
"[<link_1>/][<link_2>/]...[<link_N>/]name"
Example: "LinkToA/LinkToB/EndpointName" where a path of two links are passed to reach the LINX
endpoint.

linx is the handle to the LINX endpoint that will receive the hunt signal.

hunt_sig is the signal which will be sent to the caller when the hunt has been resolved. The sender of the
signal will be the matching LINX endpoint found. If hunt_sig is NULL, a default LINX hunt signal with
signal number LINX_OS_HUNT_SIG will be sent instead. If hunt_sig is corrupt, abort(3) is called.

LINX_HUNT_FROM(3) manual page

LINX_HUNT_FROM(3) manual page 74

from specifies a different owner of a possible pending hunt. If the endpoint, with spid from, is closed, the
pending hunt will be cancelled.

Return Value

Returns 0 if successful. -1 if an error occurred in which case errno is set.

Errors

ENOMEM Insufficient memory is available.

EBADF The linx handle refers to an invalid socket descriptor.

EFAULT The .I name parameter is invalid.

ECONNRESET The from spid in the linx_hunt_from(3) refers to a LINX endpoint that has been closed (i.e.
in state LINX_ZOMBIE).

EPIPE This error is reported at an attempt to do a linx_hunt_from(3) and the from spid is a LINX endpoint
that is being closed as the call occurs.

Bugs/Limitations

None.

Example

In this example client1 hunts for client2 and client3 */

Client 1:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client2, client3;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
 /* Open a LINX endpoint with huntname "client1" */
 linx = linx_open("client1", NULL, 0);
 /* Hunt for client2 */
 linx_hunt(linx, "client2", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, sel_hunt_sig);
 /* Retrieve client2's spid */
 client2 = linx_sender(linx, &sig);
 /* Free the hunt signal */
 linx_free_buf(linx, &sig);
 /* Hunt for client3 */
 linx_hunt(linx, "client3", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, sel_hunt_sig);
 /* Retrieve client3's spid */
 client3 = linx_sender(linx, &sig);
 /* Free the hunt signal */

LINX_HUNT_FROM(3) manual page

Description 75

 linx_free_buf(linx, &sig);
 /* Do work, e.g. exchanges signals with client2 or client3 ... */
 /* Close the LINX endpoint */
 linx_close(linx);
 return 0;
}
Client 2:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 /* Open a LINX endpoint with huntname "client2" */
 linx = linx_open("client2", NULL, 0);
 /* Do work.... */
 /* When done close the LINX endpoint */
 linx_close(linx);
 /* "client2" can no longer be hunted on */
 return 0;
}
Client 3:
#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 /* Open a LINX endpoint with huntname "client3" */
 linx = linx_open("client3", NULL, 0);
 /* Do work.... */
 /* When done close the LINX endpoint */
 linx_close(linx);
 /* "client3" can no longer be hunted on */
 return 0;
}

See Also

linx(7) , linx_attach(3) , linx_sender(3)

Author

Enea LINX team

LINX_HUNT_FROM(3) manual page

Example 76

LINXLS(1) manual page

Name

linxls - list LINX links and connections.

Synopsis

linxls

Description

List any LINX links and connections and the state of these.

Options

None.

Known Bugs

None.

See Also

linx(7) , linxstat(1) , linxcfg(1)

Author

Enea LINX team

LINXLS(1) manual page

LINXLS(1) manual page 77

LINX_MODIFY_TMO(3) manual page

Name

linx_request_tmo() - request timeout with specified signal
linx_cancel_tmo() - cancel the specified timeout.
linx_modify_tmo() - modify the specified timeout

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSTMOREF linx_request_tmo(LINX *linx, LINX_OSTIME tmo, union LINX_SIGNAL **sig);

int linx_cancel_tmo(LINX *linx, LINX_OSTMOREF *tmoref);

int linx_modify_tmo(LINX *linx, LINX_OSTMOREF *tmoref, LINX_OSTIME tmo);

Description

linx_request_tmo() is used to request a signal, sig, to be sent to the requesting LINX endpoint linx when a
timeout has expired. Information necessary for cancelling the time-out is returned. The actual time-out time,
tmo, is rounded upward to the next larger tick because a time-out can only trigger when a system clock tick is
received. Hence, the routine guarantees at least the number of milliseconds requested, but may add a few more
depending on the tick resolution. When several time-out signals are generated at the same clock tick, the order
is unspecified. If sig is NULL, the default LINX timeout signal with signal number LINX_OS_TMO_SIG is
received instead. The linx_request_tmo () call consumes the signal, and sets the sig pointer to LINX_NIL. The
signal is also consumed if an error occurs.

linx_cancel_tmo() is used to cancel a timeout. The time-out is identified by the tmoref parameter, which was
set by linx_request_tmo(). It's an error to cancel a timeout more than once or to cancel a timeout after the
timeout signal has been received. It is not an error to cancel the timeout if the timeout signal is waiting in the
receive queue of the LINX endpoint. To prevent multiple cancellations, linx_cancel_tmo() sets the tmoref
pointer to LINX_ILLEGAL_TMOREF.

linx_modify_tmo() is used to modify a timeout. The time-out is identified by the tmoref parameter, which
was set by linx_request_tmo(). It's an error to modify a timeout after the timeout signal has been received. It
is not an error to modify the timeout if the timeout signal is waiting in the receive queue of the LINX
endpoint.

linx is the handle of the LINX endpoint.

spid is the timeout time in milliseconds.

sig is either NULL or a user defined LINX signal.

tmoref is the reference to the timeout obtained from linx_request_tmo().

LINX_MODIFY_TMO(3) manual page

LINX_MODIFY_TMO(3) manual page 78

Return Value

linx_request_tmo() returns an timeout reference (LINX_OSTMOREF) when successful. This timeout
reference can be used to cancel the timeout. linx_cancel_tmo() returns 0 on success.

On failure, linx_request_tmo() returns LINX_ILLEGAL_TMOREF while linx_cancel_tmo() and
linx_modify_tmo() both returns -1. In all cases errno will be set appropriately.

Errors

EBADF, ENOTSOCK The linx handle refers to an invalid socket descriptor.

ENOMEM Not enough memory.

EINVAL Invalid argument.

Bugs/Limitations

None.

Example

This example shows how to request and wait for a timeout.

#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_tmo_sig [] = { 1, LINX_OS_TMO_SIG };
 /* Create a LINX endpoint */
 linx = linx_open("tmo-test", NULL, 0);
 /* Request a one second timeout. When the timeout expires the
 default signal will be returned. */
 linx_request_tmo(linx, 1000, NULL);
 /* Wait for the timeout signal. */
 linx_receive(linx, &sig, sel_tmo_sig);
 /* Free the timeout signal */
 linx_free_buf(linx, &sig);
 /* Close the LINX endpoint */
 linx_close(linx);
 return 0;
}

See Also

linx(7) , linx_close(3) , linx_open(3) linx_receive(3) ,

Author

Enea LINX team

LINX_MODIFY_TMO(3) manual page

Return Value 79

LINX_OPEN(3) manual page

Name

linx_open - Create a LINX endpoint and give it a huntname.

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX *linx_open(const char *name, uint32_t options, void *arg);

Description

A process uses linx_open() to create a LINX endpoint and give it a huntname. The call returns a handle to the
LINX endpoint to be used in subsequent LINX API calls. As part of the linx_open(3) call, any pending hunts
for the name are resolved, whether it is a local hunt or a hunt from a remote node connected via LINX.

name is the local part of the huntname to find this LINX endpoint. It is a null-terminated string, which in
Linux may be of any length, but there may be restrictions due to other implementations, when communicating
with other systems. name does not need to be unique in the system, but if multiple LINX endpoints have the
same name it is unspecified which one is used when a linx_hunt(3) call for the name is resolved. From
another LINX endpoint, use linx_hunt(3) with the huntname, followed by linx_receive(3) and
linx_sender(3) , to get the binary identifier (spid) to be used to communicate with this LINX endpoint. The
local LINX binary identifier (spid) for this endpoint can be fetched with linx_get_spid(3) but is usually not
needed by the owner process.

The options and arg parameters are reserved for future extensions and shall be set to 0 and NULL
respectively.

A LINX endpoint is closed by calling linx_close(3) or when the calling process exits.
If the process owning the LINX endpoint calls fork(2) , either the parent or the child must close the LINX
handle with linx_close(3) . This is because only one process may use a LINX endpoint and after a fork both
instances will have copies of the LINX handle. In any case, the LINX endpoint will not be terminated unless
closed by both parent and child.

It is possible to retrieve the LINX socket descriptor associated with a LINX endpoint using
linx_get_descriptor(3) if needed.

Return Value

On success, a LINX handle is returned. On error, NULL is returned and errno is set.

Errors

EINVAL Invalid argument passed.

ENOBUFS or ENOMEM Insufficient memory is available.

EPROTONOSUPPORT or EAFNOSUPPORT if linx(7) is not supported by the system.

LINX_OPEN(3) manual page

LINX_OPEN(3) manual page 80

ENFILE Not enough kernel memory to allocate a new LINX endpoint structure.

EMFILE Process file table overflow.

EACCES Permission to create a LINX endpoint is denied.

Bugs/Limitations

None.

See Also

linx(7) , linx_close(3) , linx_hunt(3) , linx_get_descriptor(3) , linx_receive(3) , linx_send(3) ,
linx_sender(3) , fork(2)

Author

Enea LINX team

LINX_OPEN(3) manual page

Errors 81

LINX_RECEIVE(3) manual page

Name

linx_receive() - Receive a LINX signal
linx_receive_w_tmo() - Receive a LINX signal with timeout
linx_receive_from() - Receive a LINX signal, but only from a given endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_receive(LINX *linx, union LINX_SIGNAL **sig, const LINX_SIGSELECT *sig_sel);

int linx_receive_w_tmo(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel);

int linx_receive_from(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel, LINX_SPID from);

Description

Receives a LINX signal. The calls will block until a signal is received or, if applicable, a timeout has elapsed.
The first signal in the receive queue that matches the sig_sel filter is returned to the user. This way the user
may process signals in a different order than when they arrived at the LINX endpoint. Signals that have
arrived but have not yet been received using these calls will stay in the receive queue.

linx_receive() will wait indefinitely for a signal that matches the sig_sel filter. sig_sel filters are described in
linx(7) .

linx_receive_w_tmo() waits until the provided timeout, tmo, has elapsed or for a signal that matches the
sig_sel filter. When the timeout has elapsed, zero is returned and sig is set to LINX_NIL instead of a pointer
to a signal buffer.

linx_receive_from() works in the same way as linx_receive_w_tmo() except that it will only accept signals
sent from the LINX endpoint, indicated by the spid from.

linx is the handle to the LINX endpoint, via which the signals are received.

sig is the received signal. The signal buffer is allocated by linx_receive(3) . Never use a preallocated signal
buffer as it will be lost.

sig_sel is a select filter, defining which types of buffers to receive. It is a list of signal numbers with a leading
count indicating the number of signal numbers in the list. If the first position is set to a negative count, all
signal numbers except those listed will be received. Read more about select filters in linx(7) .

tmo is the maximum number of milliseconds to wait. The value 0 will result in a check for a signal matching
sig_sel followed by an immediate return.

from is the spid of the other LINX endpoint to receive from. Before linx_receive_from() is used, it is
important to attach to the other LINX endpoint with linx_attach(3) and also to include the attach signal

LINX_RECEIVE(3) manual page

LINX_RECEIVE(3) manual page 82

number in the sig_sel filter. If this is not done and the other LINX endpoint (with spid from) is closed, this
call will block the entire specified timeout.

Return Value

Returns the size of the received signal in bytes if successful. If a signal was received, it can be found in sig,
otherwise sig will be LINX_NIL. Returns 0 if linx_receive_w_tmo(3) was called and no message was
received before the timeout.

If unsuccessful, -1 is returned and errno is set.

Errors

ENOMEM if there is not enough memory.

EBADF, EFAULT, ENOTCONN, ENOTSOCK if the underlying linx structure contains a invalid socket
descriptor.

EINTR the call was interrupted by a signal.

Bugs/Limitations

None.

Notes

In case the application needs to wait on multiple sockets of different kinds, the internal socket descriptor in a
LINX endpoint can be fetched with linx_get_descriptor(3) and used in a select(2) or poll(2) call to wake up
if anything arrives at the LINX endpoint.

Example

In this example the server sends four signals to the client and the client chooses to receive them in the order it
wants to.

Signal file (example.sig):
#include <linx.h>
#define SIG_X 0x1
#define SIG_Y 0x2
#define SIG_Z 0x3
#define SIG_W 0x4
/* select filter is { number-of-signals, signal, signal, ... } */
static const LINX_SIGSELECT sigsel_any[] = { 0 };
static const LINX_SIGSELECT sigsel_sig_x_z[] = { 2, SIG_X, SIG_Z };
static const LINX_SIGSELECT sigsel_sig_w[] = { 1, SIG_W };
Server:
#include <linx.h>
#include "example.sig"
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;

LINX_RECEIVE(3) manual page

Description 83

 union LINX_SIGNAL *sig;
 /* Open a linx endpoint with huntname "server" */
 linx = linx_open("server", NULL, 0);
 /* Hunt for client */
 linx_hunt(linx, "client", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, LINX_OS_HUNT_SIG);
 /* Retrieve client's spid */
 client = linx_sender(linx, &sig);
 /* Free the hunt signal */
 linx_free_buf(linx, &sig);
 /* Send four signals, they will be stored in the receive
 * queue on the client in same order as sent but the
 * client chooses in which order to retrieve them from
 * the queue.
 */
 /* Send signal with signal number SIG_X */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_X);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_Y */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_Y);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_Z */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_Z);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_W */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_W);
 linx_send(linx, &sig, client);
 linx_free_buf(linx, &sig);
 /* Close the linx endpoint */
 linx_close (linx);
}
Client:
#include <linx.h>
#include "example.sig"
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;
 /* Open a linx endpoint with huntname "client" */
 linx = linx_open("client", NULL, 0);
 /* Check for signal SIG_W first */
 linx_receive(linx, &sig, sigsel_sig_w);
 /* Do work, sig->sig_no is SIG_W */
 /* Free signal when done */
 linx_free_buf(linx, &sig);
 /* Receive the the first signal waiting in the receive queue */
 linx_receive(linx, &sig, sigsel_any);
 /* Do work, sig->sig_no is SIG_X */
 linx_free_buf(linx, &sig);
 /* Receive either SIG_X or SIG_Z from the receive queue. */
 linx_receive(linx, &sig, sigsel_sig_x_z);
 /* Do work, sig->sig_no is SIG_Z (SIG_X has been consumed) */
 linx_free_buf(linx, &sig);
 /* Receive the the first signal waiting in the receive queue */
 linx_receive(linx, &sig, sigsel_any);
 /* Do work, sig->sig_no is SIG_Y */
 linx_free_buf(linx, &sig);
 linx_close (linx);
}

See Also

LINX_RECEIVE(3) manual page

Example 84

linx(7) , linx_hunt(3) , linx_send(3) , linx_sender(3) , linx_free_buf(3) , linx_alloc(3) ,
linx_get_descriptor(3) , poll(2) , select(2)

Author

Enea LINX team

LINX_RECEIVE(3) manual page

See Also 85

LINX_RECEIVE_FROM(3) manual page

Name

linx_receive() - Receive a LINX signal
linx_receive_w_tmo() - Receive a LINX signal with timeout
linx_receive_from() - Receive a LINX signal, but only from a given endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_receive(LINX *linx, union LINX_SIGNAL **sig, const LINX_SIGSELECT *sig_sel);

int linx_receive_w_tmo(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel);

int linx_receive_from(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel, LINX_SPID from);

Description

Receives a LINX signal. The calls will block until a signal is received or, if applicable, a timeout has elapsed.
The first signal in the receive queue that matches the sig_sel filter is returned to the user. This way the user
may process signals in a different order than when they arrived at the LINX endpoint. Signals that have
arrived but have not yet been received using these calls will stay in the receive queue.

linx_receive() will wait indefinitely for a signal that matches the sig_sel filter. sig_sel filters are described in
linx(7) .

linx_receive_w_tmo() waits until the provided timeout, tmo, has elapsed or for a signal that matches the
sig_sel filter. When the timeout has elapsed, zero is returned and sig is set to LINX_NIL instead of a pointer
to a signal buffer.

linx_receive_from() works in the same way as linx_receive_w_tmo() except that it will only accept signals
sent from the LINX endpoint, indicated by the spid from.

linx is the handle to the LINX endpoint, via which the signals are received.

sig is the received signal. The signal buffer is allocated by linx_receive(3) . Never use a preallocated signal
buffer as it will be lost.

sig_sel is a select filter, defining which types of buffers to receive. It is a list of signal numbers with a leading
count indicating the number of signal numbers in the list. If the first position is set to a negative count, all
signal numbers except those listed will be received. Read more about select filters in linx(7) .

tmo is the maximum number of milliseconds to wait. The value 0 will result in a check for a signal matching
sig_sel followed by an immediate return.

from is the spid of the other LINX endpoint to receive from. Before linx_receive_from() is used, it is
important to attach to the other LINX endpoint with linx_attach(3) and also to include the attach signal

LINX_RECEIVE_FROM(3) manual page

LINX_RECEIVE_FROM(3) manual page 86

number in the sig_sel filter. If this is not done and the other LINX endpoint (with spid from) is closed, this
call will block the entire specified timeout.

Return Value

Returns the size of the received signal in bytes if successful. If a signal was received, it can be found in sig,
otherwise sig will be LINX_NIL. Returns 0 if linx_receive_w_tmo(3) was called and no message was
received before the timeout.

If unsuccessful, -1 is returned and errno is set.

Errors

ENOMEM if there is not enough memory.

EBADF, EFAULT, ENOTCONN, ENOTSOCK if the underlying linx structure contains a invalid socket
descriptor.

EINTR the call was interrupted by a signal.

Bugs/Limitations

None.

Notes

In case the application needs to wait on multiple sockets of different kinds, the internal socket descriptor in a
LINX endpoint can be fetched with linx_get_descriptor(3) and used in a select(2) or poll(2) call to wake up
if anything arrives at the LINX endpoint.

Example

In this example the server sends four signals to the client and the client chooses to receive them in the order it
wants to.

Signal file (example.sig):
#include <linx.h>
#define SIG_X 0x1
#define SIG_Y 0x2
#define SIG_Z 0x3
#define SIG_W 0x4
/* select filter is { number-of-signals, signal, signal, ... } */
static const LINX_SIGSELECT sigsel_any[] = { 0 };
static const LINX_SIGSELECT sigsel_sig_x_z[] = { 2, SIG_X, SIG_Z };
static const LINX_SIGSELECT sigsel_sig_w[] = { 1, SIG_W };
Server:
#include <linx.h>
#include "example.sig"
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;

LINX_RECEIVE_FROM(3) manual page

Description 87

 union LINX_SIGNAL *sig;
 /* Open a linx endpoint with huntname "server" */
 linx = linx_open("server", NULL, 0);
 /* Hunt for client */
 linx_hunt(linx, "client", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, LINX_OS_HUNT_SIG);
 /* Retrieve client's spid */
 client = linx_sender(linx, &sig);
 /* Free the hunt signal */
 linx_free_buf(linx, &sig);
 /* Send four signals, they will be stored in the receive
 * queue on the client in same order as sent but the
 * client chooses in which order to retrieve them from
 * the queue.
 */
 /* Send signal with signal number SIG_X */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_X);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_Y */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_Y);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_Z */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_Z);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_W */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_W);
 linx_send(linx, &sig, client);
 linx_free_buf(linx, &sig);
 /* Close the linx endpoint */
 linx_close (linx);
}
Client:
#include <linx.h>
#include "example.sig"
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;
 /* Open a linx endpoint with huntname "client" */
 linx = linx_open("client", NULL, 0);
 /* Check for signal SIG_W first */
 linx_receive(linx, &sig, sigsel_sig_w);
 /* Do work, sig->sig_no is SIG_W */
 /* Free signal when done */
 linx_free_buf(linx, &sig);
 /* Receive the the first signal waiting in the receive queue */
 linx_receive(linx, &sig, sigsel_any);
 /* Do work, sig->sig_no is SIG_X */
 linx_free_buf(linx, &sig);
 /* Receive either SIG_X or SIG_Z from the receive queue. */
 linx_receive(linx, &sig, sigsel_sig_x_z);
 /* Do work, sig->sig_no is SIG_Z (SIG_X has been consumed) */
 linx_free_buf(linx, &sig);
 /* Receive the the first signal waiting in the receive queue */
 linx_receive(linx, &sig, sigsel_any);
 /* Do work, sig->sig_no is SIG_Y */
 linx_free_buf(linx, &sig);
 linx_close (linx);
}

See Also

LINX_RECEIVE_FROM(3) manual page

Example 88

linx(7) , linx_hunt(3) , linx_send(3) , linx_sender(3) , linx_free_buf(3) , linx_alloc(3) ,
linx_get_descriptor(3) , poll(2) , select(2)

Author

Enea LINX team

LINX_RECEIVE_FROM(3) manual page

See Also 89

LINX_RECEIVE_W_TMO(3) manual page

Name

linx_receive() - Receive a LINX signal
linx_receive_w_tmo() - Receive a LINX signal with timeout
linx_receive_from() - Receive a LINX signal, but only from a given endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_receive(LINX *linx, union LINX_SIGNAL **sig, const LINX_SIGSELECT *sig_sel);

int linx_receive_w_tmo(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel);

int linx_receive_from(LINX *linx, union LINX_SIGNAL **sig, LINX_OSTIME tmo, const
LINX_SIGSELECT *sig_sel, LINX_SPID from);

Description

Receives a LINX signal. The calls will block until a signal is received or, if applicable, a timeout has elapsed.
The first signal in the receive queue that matches the sig_sel filter is returned to the user. This way the user
may process signals in a different order than when they arrived at the LINX endpoint. Signals that have
arrived but have not yet been received using these calls will stay in the receive queue.

linx_receive() will wait indefinitely for a signal that matches the sig_sel filter. sig_sel filters are described in
linx(7) .

linx_receive_w_tmo() waits until the provided timeout, tmo, has elapsed or for a signal that matches the
sig_sel filter. When the timeout has elapsed, zero is returned and sig is set to LINX_NIL instead of a pointer
to a signal buffer.

linx_receive_from() works in the same way as linx_receive_w_tmo() except that it will only accept signals
sent from the LINX endpoint, indicated by the spid from.

linx is the handle to the LINX endpoint, via which the signals are received.

sig is the received signal. The signal buffer is allocated by linx_receive(3) . Never use a preallocated signal
buffer as it will be lost.

sig_sel is a select filter, defining which types of buffers to receive. It is a list of signal numbers with a leading
count indicating the number of signal numbers in the list. If the first position is set to a negative count, all
signal numbers except those listed will be received. Read more about select filters in linx(7) .

tmo is the maximum number of milliseconds to wait. The value 0 will result in a check for a signal matching
sig_sel followed by an immediate return.

from is the spid of the other LINX endpoint to receive from. Before linx_receive_from() is used, it is
important to attach to the other LINX endpoint with linx_attach(3) and also to include the attach signal

LINX_RECEIVE_W_TMO(3) manual page

LINX_RECEIVE_W_TMO(3) manual page 90

number in the sig_sel filter. If this is not done and the other LINX endpoint (with spid from) is closed, this
call will block the entire specified timeout.

Return Value

Returns the size of the received signal in bytes if successful. If a signal was received, it can be found in sig,
otherwise sig will be LINX_NIL. Returns 0 if linx_receive_w_tmo(3) was called and no message was
received before the timeout.

If unsuccessful, -1 is returned and errno is set.

Errors

ENOMEM if there is not enough memory.

EBADF, EFAULT, ENOTCONN, ENOTSOCK if the underlying linx structure contains a invalid socket
descriptor.

EINTR the call was interrupted by a signal.

Bugs/Limitations

None.

Notes

In case the application needs to wait on multiple sockets of different kinds, the internal socket descriptor in a
LINX endpoint can be fetched with linx_get_descriptor(3) and used in a select(2) or poll(2) call to wake up
if anything arrives at the LINX endpoint.

Example

In this example the server sends four signals to the client and the client chooses to receive them in the order it
wants to.

Signal file (example.sig):
#include <linx.h>
#define SIG_X 0x1
#define SIG_Y 0x2
#define SIG_Z 0x3
#define SIG_W 0x4
/* select filter is { number-of-signals, signal, signal, ... } */
static const LINX_SIGSELECT sigsel_any[] = { 0 };
static const LINX_SIGSELECT sigsel_sig_x_z[] = { 2, SIG_X, SIG_Z };
static const LINX_SIGSELECT sigsel_sig_w[] = { 1, SIG_W };
Server:
#include <linx.h>
#include "example.sig"
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;

LINX_RECEIVE_W_TMO(3) manual page

Description 91

 union LINX_SIGNAL *sig;
 /* Open a linx endpoint with huntname "server" */
 linx = linx_open("server", NULL, 0);
 /* Hunt for client */
 linx_hunt(linx, "client", NULL);
 /* Receive hunt signal */
 linx_receive(linx, &sig, LINX_OS_HUNT_SIG);
 /* Retrieve client's spid */
 client = linx_sender(linx, &sig);
 /* Free the hunt signal */
 linx_free_buf(linx, &sig);
 /* Send four signals, they will be stored in the receive
 * queue on the client in same order as sent but the
 * client chooses in which order to retrieve them from
 * the queue.
 */
 /* Send signal with signal number SIG_X */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_X);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_Y */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_Y);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_Z */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_Z);
 linx_send(linx, &sig, client);
 /* Send signal with signal number SIG_W */
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), SIG_W);
 linx_send(linx, &sig, client);
 linx_free_buf(linx, &sig);
 /* Close the linx endpoint */
 linx_close (linx);
}
Client:
#include <linx.h>
#include "example.sig"
int
main (int argc, char *argv[])
{
 LINX *linx;
 LINX_SPID client;
 /* Open a linx endpoint with huntname "client" */
 linx = linx_open("client", NULL, 0);
 /* Check for signal SIG_W first */
 linx_receive(linx, &sig, sigsel_sig_w);
 /* Do work, sig->sig_no is SIG_W */
 /* Free signal when done */
 linx_free_buf(linx, &sig);
 /* Receive the the first signal waiting in the receive queue */
 linx_receive(linx, &sig, sigsel_any);
 /* Do work, sig->sig_no is SIG_X */
 linx_free_buf(linx, &sig);
 /* Receive either SIG_X or SIG_Z from the receive queue. */
 linx_receive(linx, &sig, sigsel_sig_x_z);
 /* Do work, sig->sig_no is SIG_Z (SIG_X has been consumed) */
 linx_free_buf(linx, &sig);
 /* Receive the the first signal waiting in the receive queue */
 linx_receive(linx, &sig, sigsel_any);
 /* Do work, sig->sig_no is SIG_Y */
 linx_free_buf(linx, &sig);
 linx_close (linx);
}

See Also

LINX_RECEIVE_W_TMO(3) manual page

Example 92

linx(7) , linx_hunt(3) , linx_send(3) , linx_sender(3) , linx_free_buf(3) , linx_alloc(3) ,
linx_get_descriptor(3) , poll(2) , select(2)

Author

Enea LINX team

LINX_RECEIVE_W_TMO(3) manual page

See Also 93

LINX_REQUEST_TMO(3) manual page

Name

linx_request_tmo() - request timeout with specified signal
linx_cancel_tmo() - cancel the specified timeout.
linx_modify_tmo() - modify the specified timeout

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSTMOREF linx_request_tmo(LINX *linx, LINX_OSTIME tmo, union LINX_SIGNAL **sig);

int linx_cancel_tmo(LINX *linx, LINX_OSTMOREF *tmoref);

int linx_modify_tmo(LINX *linx, LINX_OSTMOREF *tmoref, LINX_OSTIME tmo);

Description

linx_request_tmo() is used to request a signal, sig, to be sent to the requesting LINX endpoint linx when a
timeout has expired. Information necessary for cancelling the time-out is returned. The actual time-out time,
tmo, is rounded upward to the next larger tick because a time-out can only trigger when a system clock tick is
received. Hence, the routine guarantees at least the number of milliseconds requested, but may add a few more
depending on the tick resolution. When several time-out signals are generated at the same clock tick, the order
is unspecified. If sig is NULL, the default LINX timeout signal with signal number LINX_OS_TMO_SIG is
received instead. The linx_request_tmo () call consumes the signal, and sets the sig pointer to LINX_NIL. The
signal is also consumed if an error occurs.

linx_cancel_tmo() is used to cancel a timeout. The time-out is identified by the tmoref parameter, which was
set by linx_request_tmo(). It's an error to cancel a timeout more than once or to cancel a timeout after the
timeout signal has been received. It is not an error to cancel the timeout if the timeout signal is waiting in the
receive queue of the LINX endpoint. To prevent multiple cancellations, linx_cancel_tmo() sets the tmoref
pointer to LINX_ILLEGAL_TMOREF.

linx_modify_tmo() is used to modify a timeout. The time-out is identified by the tmoref parameter, which
was set by linx_request_tmo(). It's an error to modify a timeout after the timeout signal has been received. It
is not an error to modify the timeout if the timeout signal is waiting in the receive queue of the LINX
endpoint.

linx is the handle of the LINX endpoint.

spid is the timeout time in milliseconds.

sig is either NULL or a user defined LINX signal.

tmoref is the reference to the timeout obtained from linx_request_tmo().

LINX_REQUEST_TMO(3) manual page

LINX_REQUEST_TMO(3) manual page 94

Return Value

linx_request_tmo() returns an timeout reference (LINX_OSTMOREF) when successful. This timeout
reference can be used to cancel the timeout. linx_cancel_tmo() returns 0 on success.

On failure, linx_request_tmo() returns LINX_ILLEGAL_TMOREF while linx_cancel_tmo() and
linx_modify_tmo() both returns -1. In all cases errno will be set appropriately.

Errors

EBADF, ENOTSOCK The linx handle refers to an invalid socket descriptor.

ENOMEM Not enough memory.

EINVAL Invalid argument.

Bugs/Limitations

None.

Example

This example shows how to request and wait for a timeout.

#include <linx.h>
int
main (int argc, char *argv[])
{
 LINX *linx;
 union LINX_SIGNAL *sig;
 const LINX_SIGSELECT sel_tmo_sig [] = { 1, LINX_OS_TMO_SIG };
 /* Create a LINX endpoint */
 linx = linx_open("tmo-test", NULL, 0);
 /* Request a one second timeout. When the timeout expires the
 default signal will be returned. */
 linx_request_tmo(linx, 1000, NULL);
 /* Wait for the timeout signal. */
 linx_receive(linx, &sig, sel_tmo_sig);
 /* Free the timeout signal */
 linx_free_buf(linx, &sig);
 /* Close the LINX endpoint */
 linx_close(linx);
 return 0;
}

See Also

linx(7) , linx_close(3) , linx_open(3) linx_receive(3) ,

Author

Enea LINX team

LINX_REQUEST_TMO(3) manual page

Return Value 95

LINX_SEND(3) manual page

Name

linx_send() - Send a LINX signal to a LINX endpoint (spid)

linx_send_w_s() - Send a LINX signal and specify a different LINX endpoint as sender

linx_send_w_opt() - Send a signal to a LINX endpoint (spid) with alternative

methods

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_send(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID to);

int linx_send_w_s(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to);

int linx_send_w_opt(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to,
int32_t *taglist);

Description

Send a signal to the LINX endpoint identified by the to binary identifier (spid). linx_send(3) always
consumes the signal buffer, even if the call fails, by freeing the memory and setting *sig to LINX_NIL to
prevent further access.

linx is the handle to the LINX endpoint, via which the signal is transmitted.

sig is the signal to send. The signal buffer must be owned by the transmitting LINX endpoint. It could have
been allocated with linx_alloc(3) or received via the same LINX endpoint. If sig is corrupt, abort(3) is called.

to is the identifier (spid) of the recipient LINX endpoint, usually found as a result of a linx_hunt(3) . If the to
spid refers to an endpoint that has been closed (i.e. in state LINX_ZOMBIE), -1 is returned and errno is set to
ECONNRESET. If to does not apply to the specific method used in linx_send_w_opt(3) , the
LINX_ILLEGAL_SPID define shall be used as its value.

from is the identifier (spid) of a different sender endpoint (instead of the transmitting endpoint). The recipient
will see this spid as the sender of the signal. If the from spid refers to an endpoint that has been closed (i.e. in
state LINX_ZOMBIE), -1 is returned and errno is set to ECONNRESET. If from does not apply to the
specific method used in linx_send_w_opt(3) , the LINX_ILLEGAL_SPID define shall be used as its value.

taglist is an array of tags and values used with the call linx_send_w_opt(3) . Each tag has an associated value
that directly follows it. See the example for details. If the taglist contains an invalid parameter, -1 is returned
and errno is set to EINVAL. The taglist parameter list can contain the folllowing values.

LINX_SIG_OPT_OOB

LINX_SEND(3) manual page

LINX_SEND(3) manual page 96

The LINX_SIG_OPT_OOB tag is used to enable the OOB send method. The value of the
LINX_SIG_OPT_OOB tag shall be 1.

An OOB signal is a signal that is transmitted, transported, forwarded and received ahead of in band
signals. When the OOB signal is placed in the signal queue of the receiving process, it is placed ahead
of in band signals but after OOB signals present in the signal queue.

If the OOB signal is sent inter node and the operating system on the receiving node is not supporting
OOB, the signal is delivered as an in band signal.

When sending an OOB signal the sig parameter is the signal to be sent OOB. The signal buffer must
be owned by the transmitting LINX endpoint. It could have been allocated with linx_alloc(3) or
received.

When an OOB signal is sent using linx_send_w_opt(3) , a signal attribute is set on the signal,
LINX_SIG_ATTR_OOB. The linx_sigattr(3) is used to test if the attribute is set or not.

LINX_SIG_OPT_END
Marks the end of the taglist and has no value. Must be at the end of the taglist.

Return Value

Returns 0 if successful. On failure, -1 is returned and errno will be set. In any case, sig is set to LINX_NIL.

Errors

EBADF, ENOTSOCK The LINX endpoint is associated with an invalid socket descriptor.

ENOBUFS, ENOMEM Insufficient memory is available.

ECONNRESET The destination spid refers to a LINX endpoint that has been closed (i.e. in state
LINX_ZOMBIE). This situation is best avoided by using linx_attach(3) to supervise the receiving LINX
endpoint. Closed spid are not reused until forced by spid instance counter overflow.

EPIPE This error is reported at an attempt to send to the spid of a LINX endpoint that is being closed as the
call occurs.

EINVAL This error is reported if an unrecognized taglist parameter was passed in the taglist.

Bugs/Limitations

None.

Example

 union LINX_SIGNAL *sig;
 LINX *linx;
 LINX_SPID to_spid;
 LINX_SPID from_spid;
 int32_t taglist[3];
 ...
 taglist[0]=LINX_SIG_OPT_OOB;
 taglist[1]=1;

LINX_SEND(3) manual page

Description 97

 taglist[2]=LINX_SIG_OPT_END;
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), 100);
 (void)linx_send_w_opt(linx, &sig, to_spid, from_spid, taglist);
 ...

Notes

It is illegal to allocate/receive a signal buffer on one LINX endpoint and then send it using linx_send(3) from
another LINX endpoint. In that case a new signal buffer needs to be allocated and the buffer contents moved
to the new signal buffers prior to sending it.

 union LINX_SIGNAL *sig1, *sig2;
 LINX_OSBUFSIZE size;
 LINX_SIGSELECT sel[] = {0};
 LINX *linx1, *linx2;
 LINX_SPID to_spid;
 ...
 sig1 = linx_receive(linx1, &sig1, sel);
 size = linx_sigsize(linx1, sig1);
 sig2 = linx_alloc(linx2, size, sel);
 memcpy((void)sig2, (void)sig1, size);
 (void)linx_free_buf(linx1, &sig1);
 (void)linx_send(linx2, &sig2, to_spid);
 ...

See Also

linx(7) , linx_alloc(3) , linx_hunt(3) , linx_receive(3) , linx_receive_w_tmo(3) , linx_receive_from(3) ,
linx_sigattr(3)

Author

Enea LINX team

LINX_SEND(3) manual page

Example 98

LINX_SENDER(3) manual page

Name

linx_sender() - Retrieve the sender of a LINX signal

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_SPID linx_sender(LINX *linx, union LINX_SIGNAL **sig);

Description

Get the binary identifier (spid) of the LINX endpoint which sent the signal sig.

linx is the handle of the LINX endpoint on which sig was received.

If sig is corrupt, abort(3) is called.

Return Value

The identifier (spid) of the LINX endpoint, which sent the signal sig. If the signal was never sent,
linx_sender() will return the spid of the own LINX endpoint.

Bugs/Limitations

None.

See Also

linx(7) , linx_alloc(3) , linx_receive(3) , linx_receive_from(3) , linx_receive_w_tmo(3) ,

Author

Enea LINX team

LINX_SENDER(3) manual page

LINX_SENDER(3) manual page 99

LINX_SEND_W_OPT(3) manual page

Name

linx_send() - Send a LINX signal to a LINX endpoint (spid)

linx_send_w_s() - Send a LINX signal and specify a different LINX endpoint as sender

linx_send_w_opt() - Send a signal to a LINX endpoint (spid) with alternative

methods

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_send(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID to);

int linx_send_w_s(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to);

int linx_send_w_opt(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to,
int32_t *taglist);

Description

Send a signal to the LINX endpoint identified by the to binary identifier (spid). linx_send(3) always
consumes the signal buffer, even if the call fails, by freeing the memory and setting *sig to LINX_NIL to
prevent further access.

linx is the handle to the LINX endpoint, via which the signal is transmitted.

sig is the signal to send. The signal buffer must be owned by the transmitting LINX endpoint. It could have
been allocated with linx_alloc(3) or received via the same LINX endpoint. If sig is corrupt, abort(3) is called.

to is the identifier (spid) of the recipient LINX endpoint, usually found as a result of a linx_hunt(3) . If the to
spid refers to an endpoint that has been closed (i.e. in state LINX_ZOMBIE), -1 is returned and errno is set to
ECONNRESET. If to does not apply to the specific method used in linx_send_w_opt(3) , the
LINX_ILLEGAL_SPID define shall be used as its value.

from is the identifier (spid) of a different sender endpoint (instead of the transmitting endpoint). The recipient
will see this spid as the sender of the signal. If the from spid refers to an endpoint that has been closed (i.e. in
state LINX_ZOMBIE), -1 is returned and errno is set to ECONNRESET. If from does not apply to the
specific method used in linx_send_w_opt(3) , the LINX_ILLEGAL_SPID define shall be used as its value.

taglist is an array of tags and values used with the call linx_send_w_opt(3) . Each tag has an associated value
that directly follows it. See the example for details. If the taglist contains an invalid parameter, -1 is returned
and errno is set to EINVAL. The taglist parameter list can contain the folllowing values.

LINX_SIG_OPT_OOB

LINX_SEND_W_OPT(3) manual page

LINX_SEND_W_OPT(3) manual page 100

The LINX_SIG_OPT_OOB tag is used to enable the OOB send method. The value of the
LINX_SIG_OPT_OOB tag shall be 1.

An OOB signal is a signal that is transmitted, transported, forwarded and received ahead of in band
signals. When the OOB signal is placed in the signal queue of the receiving process, it is placed ahead
of in band signals but after OOB signals present in the signal queue.

If the OOB signal is sent inter node and the operating system on the receiving node is not supporting
OOB, the signal is delivered as an in band signal.

When sending an OOB signal the sig parameter is the signal to be sent OOB. The signal buffer must
be owned by the transmitting LINX endpoint. It could have been allocated with linx_alloc(3) or
received.

When an OOB signal is sent using linx_send_w_opt(3) , a signal attribute is set on the signal,
LINX_SIG_ATTR_OOB. The linx_sigattr(3) is used to test if the attribute is set or not.

LINX_SIG_OPT_END
Marks the end of the taglist and has no value. Must be at the end of the taglist.

Return Value

Returns 0 if successful. On failure, -1 is returned and errno will be set. In any case, sig is set to LINX_NIL.

Errors

EBADF, ENOTSOCK The LINX endpoint is associated with an invalid socket descriptor.

ENOBUFS, ENOMEM Insufficient memory is available.

ECONNRESET The destination spid refers to a LINX endpoint that has been closed (i.e. in state
LINX_ZOMBIE). This situation is best avoided by using linx_attach(3) to supervise the receiving LINX
endpoint. Closed spid are not reused until forced by spid instance counter overflow.

EPIPE This error is reported at an attempt to send to the spid of a LINX endpoint that is being closed as the
call occurs.

EINVAL This error is reported if an unrecognized taglist parameter was passed in the taglist.

Bugs/Limitations

None.

Example

 union LINX_SIGNAL *sig;
 LINX *linx;
 LINX_SPID to_spid;
 LINX_SPID from_spid;
 int32_t taglist[3];
 ...
 taglist[0]=LINX_SIG_OPT_OOB;
 taglist[1]=1;

LINX_SEND_W_OPT(3) manual page

Description 101

 taglist[2]=LINX_SIG_OPT_END;
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), 100);
 (void)linx_send_w_opt(linx, &sig, to_spid, from_spid, taglist);
 ...

Notes

It is illegal to allocate/receive a signal buffer on one LINX endpoint and then send it using linx_send(3) from
another LINX endpoint. In that case a new signal buffer needs to be allocated and the buffer contents moved
to the new signal buffers prior to sending it.

 union LINX_SIGNAL *sig1, *sig2;
 LINX_OSBUFSIZE size;
 LINX_SIGSELECT sel[] = {0};
 LINX *linx1, *linx2;
 LINX_SPID to_spid;
 ...
 sig1 = linx_receive(linx1, &sig1, sel);
 size = linx_sigsize(linx1, sig1);
 sig2 = linx_alloc(linx2, size, sel);
 memcpy((void)sig2, (void)sig1, size);
 (void)linx_free_buf(linx1, &sig1);
 (void)linx_send(linx2, &sig2, to_spid);
 ...

See Also

linx(7) , linx_alloc(3) , linx_hunt(3) , linx_receive(3) , linx_receive_w_tmo(3) , linx_receive_from(3) ,
linx_sigattr(3)

Author

Enea LINX team

LINX_SEND_W_OPT(3) manual page

Example 102

LINX_SEND_W_S(3) manual page

Name

linx_send() - Send a LINX signal to a LINX endpoint (spid)

linx_send_w_s() - Send a LINX signal and specify a different LINX endpoint as sender

linx_send_w_opt() - Send a signal to a LINX endpoint (spid) with alternative

methods

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_send(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID to);

int linx_send_w_s(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to);

int linx_send_w_opt(LINX *linx, union LINX_SIGNAL **sig, LINX_SPID from, LINX_SPID to,
int32_t *taglist);

Description

Send a signal to the LINX endpoint identified by the to binary identifier (spid). linx_send(3) always
consumes the signal buffer, even if the call fails, by freeing the memory and setting *sig to LINX_NIL to
prevent further access.

linx is the handle to the LINX endpoint, via which the signal is transmitted.

sig is the signal to send. The signal buffer must be owned by the transmitting LINX endpoint. It could have
been allocated with linx_alloc(3) or received via the same LINX endpoint. If sig is corrupt, abort(3) is called.

to is the identifier (spid) of the recipient LINX endpoint, usually found as a result of a linx_hunt(3) . If the to
spid refers to an endpoint that has been closed (i.e. in state LINX_ZOMBIE), -1 is returned and errno is set to
ECONNRESET. If to does not apply to the specific method used in linx_send_w_opt(3) , the
LINX_ILLEGAL_SPID define shall be used as its value.

from is the identifier (spid) of a different sender endpoint (instead of the transmitting endpoint). The recipient
will see this spid as the sender of the signal. If the from spid refers to an endpoint that has been closed (i.e. in
state LINX_ZOMBIE), -1 is returned and errno is set to ECONNRESET. If from does not apply to the
specific method used in linx_send_w_opt(3) , the LINX_ILLEGAL_SPID define shall be used as its value.

taglist is an array of tags and values used with the call linx_send_w_opt(3) . Each tag has an associated value
that directly follows it. See the example for details. If the taglist contains an invalid parameter, -1 is returned
and errno is set to EINVAL. The taglist parameter list can contain the folllowing values.

LINX_SIG_OPT_OOB

LINX_SEND_W_S(3) manual page

LINX_SEND_W_S(3) manual page 103

The LINX_SIG_OPT_OOB tag is used to enable the OOB send method. The value of the
LINX_SIG_OPT_OOB tag shall be 1.

An OOB signal is a signal that is transmitted, transported, forwarded and received ahead of in band
signals. When the OOB signal is placed in the signal queue of the receiving process, it is placed ahead
of in band signals but after OOB signals present in the signal queue.

If the OOB signal is sent inter node and the operating system on the receiving node is not supporting
OOB, the signal is delivered as an in band signal.

When sending an OOB signal the sig parameter is the signal to be sent OOB. The signal buffer must
be owned by the transmitting LINX endpoint. It could have been allocated with linx_alloc(3) or
received.

When an OOB signal is sent using linx_send_w_opt(3) , a signal attribute is set on the signal,
LINX_SIG_ATTR_OOB. The linx_sigattr(3) is used to test if the attribute is set or not.

LINX_SIG_OPT_END
Marks the end of the taglist and has no value. Must be at the end of the taglist.

Return Value

Returns 0 if successful. On failure, -1 is returned and errno will be set. In any case, sig is set to LINX_NIL.

Errors

EBADF, ENOTSOCK The LINX endpoint is associated with an invalid socket descriptor.

ENOBUFS, ENOMEM Insufficient memory is available.

ECONNRESET The destination spid refers to a LINX endpoint that has been closed (i.e. in state
LINX_ZOMBIE). This situation is best avoided by using linx_attach(3) to supervise the receiving LINX
endpoint. Closed spid are not reused until forced by spid instance counter overflow.

EPIPE This error is reported at an attempt to send to the spid of a LINX endpoint that is being closed as the
call occurs.

EINVAL This error is reported if an unrecognized taglist parameter was passed in the taglist.

Bugs/Limitations

None.

Example

 union LINX_SIGNAL *sig;
 LINX *linx;
 LINX_SPID to_spid;
 LINX_SPID from_spid;
 int32_t taglist[3];
 ...
 taglist[0]=LINX_SIG_OPT_OOB;
 taglist[1]=1;

LINX_SEND_W_S(3) manual page

Description 104

 taglist[2]=LINX_SIG_OPT_END;
 sig = linx_alloc(linx, sizeof(LINX_SIGSELECT), 100);
 (void)linx_send_w_opt(linx, &sig, to_spid, from_spid, taglist);
 ...

Notes

It is illegal to allocate/receive a signal buffer on one LINX endpoint and then send it using linx_send(3) from
another LINX endpoint. In that case a new signal buffer needs to be allocated and the buffer contents moved
to the new signal buffers prior to sending it.

 union LINX_SIGNAL *sig1, *sig2;
 LINX_OSBUFSIZE size;
 LINX_SIGSELECT sel[] = {0};
 LINX *linx1, *linx2;
 LINX_SPID to_spid;
 ...
 sig1 = linx_receive(linx1, &sig1, sel);
 size = linx_sigsize(linx1, sig1);
 sig2 = linx_alloc(linx2, size, sel);
 memcpy((void)sig2, (void)sig1, size);
 (void)linx_free_buf(linx1, &sig1);
 (void)linx_send(linx2, &sig2, to_spid);
 ...

See Also

linx(7) , linx_alloc(3) , linx_hunt(3) , linx_receive(3) , linx_receive_w_tmo(3) , linx_receive_from(3) ,
linx_sigattr(3)

Author

Enea LINX team

LINX_SEND_W_S(3) manual page

Example 105

LINX_SET_SIGSIZE(3) manual page

Name

linx_sigsize() - Get the size of a LINX signal buffer in bytes
linx_set_sigsize() - Set the size of a LINX signal buffer in bytes

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSBUFSIZE linx_sigsize(LINX *linx, union LINX_SIGNAL **sig);

int linx_set_sigsize(LINX *linx, union LINX_SIGNAL **sig, LINX_OSBUFSIZE sigsize);

Description

linx_sigsize() gets the size of the signal buffer sig. The signal buffer must be owned by the LINX endpoint,
referred to by linx but can either be a received buffer or a buffer, allocated by the linx_alloc(3) call on this
LINX endpoint. If sig is corrupt, abort(3) is called.

linx_set_sigsize() resizes the signal buffer sig to sigsize bytes and returns 0 on success. An error is returned if
the size is outside permitted limits. If the new size of the signal buffer sig is smaller than the original size, the
data stored in signal buffer sig is truncated.

linx is the handle to the LINX endpoint, which owns the sig signal buffer.

sigsize is the new size in bytes of the signal buffer.

Return Value

linx_sigsize returns the size in bytes of the signal buffer. linx_set_sigsize returns zero on success. If an error
occurred, -1 is returned and errno is set.

Errors

EMSGSIZE sigsize is less than 4.

ENOMEM Insufficient memory is available.

Bugs/Limitations

None.

See Also

linx(7) , linx_alloc(3) , linx_receive(3)

LINX_SET_SIGSIZE(3) manual page

LINX_SET_SIGSIZE(3) manual page 106

Author

Enea LINX team

LINX_SET_SIGSIZE(3) manual page

Author 107

LINX_SIGATTR(3) manual page

Name

linx_sigattr() - Get an attribute of a LINX signal

Synopsis

#include <linx_types.h>
#include <linx.h>

int linx_sigattr(const LINX *linx, const union LINX_SIGNAL **sig, uint32_t attr, void **value);

Description

The linx_sigattr(3) API function is used to determine what attributes a received signal sig has, due to a
linx_send_w_opt(3) LINX API call. The value pointer will be set to an attribute specific value. The linx
parameter is the LINX handle used when receiving the signal.

linx is the handle to the LINX endpoint, which owns the sig signal buffer.

attr is the attribute of the sig signal buffer.

value is the returned value that corresponds to attr which in turn is the name of the attribute set on the sig
signal buffer. attr can have the following values.

LINX_SIG_ATTR_OOB
A signal has the LINX_SIG_OPT_OOB attribute with value set to 1 if it was sent using the
alternative linx_send_w_opt(3) with LINX_SIG_OPT_OOB. If the attribute is not set, the returned
value is ~0.

The OOB attribute has no affect on further communication using the signal, it is kept to make it
possible for the receiving LINX endpoint to know if a signal is OOB or not. If the signal is sent to
another LINX endpoint and the OOB attribute needs to be preserved, the linx_send_w_opt(3) call
needs to be used for that signaling. If the received OOB signal is sent with linx_send(3) or
linx_send_w_s(3) the OOB attribute is lost and the signal is transmitted as a in band signal.

Return Value

Returns 0 if successful. On failure, -1 is returned and errno will be set.

Errors

EBADF, ENOTSOCK The LINX endpoint is associated with an invalid socket descriptor.

Bugs/Limitations

None.

LINX_SIGATTR(3) manual page

LINX_SIGATTR(3) manual page 108

See Also

linx(7) , linx_send_w_opt(3)

Author

Enea LINX team

LINX_SIGATTR(3) manual page

See Also 109

LINX_SIGSIZE(3) manual page

Name

linx_sigsize() - Get the size of a LINX signal buffer in bytes
linx_set_sigsize() - Set the size of a LINX signal buffer in bytes

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSBUFSIZE linx_sigsize(LINX *linx, union LINX_SIGNAL **sig);

int linx_set_sigsize(LINX *linx, union LINX_SIGNAL **sig, LINX_OSBUFSIZE sigsize);

Description

linx_sigsize() gets the size of the signal buffer sig. The signal buffer must be owned by the LINX endpoint,
referred to by linx but can either be a received buffer or a buffer, allocated by the linx_alloc(3) call on this
LINX endpoint. If sig is corrupt, abort(3) is called.

linx_set_sigsize() resizes the signal buffer sig to sigsize bytes and returns 0 on success. An error is returned if
the size is outside permitted limits. If the new size of the signal buffer sig is smaller than the original size, the
data stored in signal buffer sig is truncated.

linx is the handle to the LINX endpoint, which owns the sig signal buffer.

sigsize is the new size in bytes of the signal buffer.

Return Value

linx_sigsize returns the size in bytes of the signal buffer. linx_set_sigsize returns zero on success. If an error
occurred, -1 is returned and errno is set.

Errors

EMSGSIZE sigsize is less than 4.

ENOMEM Insufficient memory is available.

Bugs/Limitations

None.

See Also

linx(7) , linx_alloc(3) , linx_receive(3)

LINX_SIGSIZE(3) manual page

LINX_SIGSIZE(3) manual page 110

Author

Enea LINX team

LINX_SIGSIZE(3) manual page

Author 111

LINXSTAT(1) manual page

Name

linxstat - display specific information about LINX

Synopsis

linxstat [-a] [-b] [-f] [-h] [-H] [-q] [-s] [-S] [-t type] [-T]

Description

linxstat is a utility to display the status of the LINX communication system, including information about all
local and known remote LINX endpoints and LINX links to remote nodes. The names, types, status and local
identifiers are displayed as well as queues, attaches and hunts. The information is fetched from the LINX
kernel module. The following columns can be output, in addition to a leading summary (compare the
example):

PID is the id of the process owning the LINX endpoint or LINX link. As each remote endpoint are
represented by a local LINX endpoint with a local identifier (spid), they are all owned by one common local
process.

spid is the local LINX binary identifier for the LINX endpoint or LINX link.

name is the huntname of the LINX endpoint or LINX link. If a name is too long for the column, a "+" sign is
displayed and the tailing part of the name.

type is the type of entry, i.e. local for a local LINX endpoint, link for a LINX link to another node, remote for
a local representation of a remote LINX endpoint, zombie for a LINX endpoint which has been closed, illegal
if an endpoint structure is illegal. unknown if linxstat cannot reach the LINX endpoint.

state is the state of the endpoint or link. The main states are running not waiting for anything, recv while
waiting to receive signal buffers, poll while waiting for events with the poll(2) or select(2) system call,
unknown if linxstat cannot get the state.

queue is the receive queue. This is the number of signal buffers delivered to the LINX endpoint, but not yet
received.

attach(from/to) are the pending attach information. Both the number of attaches to each LINX endpoint from
other endpoints and the number of attaches from each endpoint to other endpoints are displayed.

hunt are pending hunts owned by each LINX endpoint. It also includes pending hunts, sent by others but with
this endpoint as sender.

tmo are pending timeouts for each LINX endpoint.

Options

-a
Display more verbose pending attach information.

-b

LINXSTAT(1) manual page

LINXSTAT(1) manual page 112

Batch mode, only display the number of open LINX endpoints.
-f

Print receive filters.
-h

Display a short help message.
-H

Display more verbose pending hunt information.
-q

Display more verbose receive queue information.
-s

Display less information (simple). Only endpoint-specific information are displayed, no summary, no
title and no counter columns.

-S
If the LINX kernel module has been compiled with per-socket statistics (SOCK_STAT) then linxstat
can display statistics for each socket.

-t type
Display only sockets of the specified type.

-T
Print pending timeouts.

Files

None.

Diagnostics

linxstat writes all information to standard output.

Known Bugs

linxstat queries are not atomic, the state of the system may change while linxstat is running.

Example

This is a displayed list from linxstat.

 local:5 remote:1 link:1
 pending attach:2
 pending hunt:0
 pending timeout:0
 queued signals:0
 PID spid name type state queue attach(f/t) hunt tmo
24903 0x10003 linx16 link - 0 1/0 0 0
24903 0x10004 +16/apitest_server remote - 0 0/0 0 0
24909 0x10001 apitest_client local run 0 0/1 0 0
24909 0x10024 +est_attach_parent local poll 0 1/1 0 0
24909 0x10005 not bound local run 0 0/0 0 0
24958 0x10023 +test_attach_child local recv 0 0/0 0 0
24963 0x10025 linxstat local run 0 0/0 0 0

With -a, more information is displayed after each line with pending attaches. Extracts from a table, created by
linxstat -a:

LINXSTAT(1) manual page

Options 113

 local:4 remote:1 link:1
 pending attach:1
 pending hunt:0
 pending timeout:0
 queued signals:0
 PID spid name type state queue attach(f/t) hunt tmo
25053 0x10002 linx16 link - 0 1/0 0 0
 Attach info (from):
 [attref:0x00000400 from:0x00010001 signo:0 size: 0]
25053 0x10003 +16/apitest_server remote - 0 0/0 0 0
25059 0x10001 apitest_client local run 0 0/1 0 0
 Attach info (to):
 [attref:0x00000400 to:0x00010001 signo:0 size: 0]
25059 0x10004 not bound local run 0 0/0 0 0
25059 0x10014 +inx_receive_w_tmo local poll 0 0/0 0 0
25083 0x10015 linxstat local run 0 0/0 0 0

See Also

linx(7) , linx_attach(3) , linx_hunt(3) , linx_open(3) , linxdisc(8) , linxdisc.conf(5) , linxcfg(1)

Author

Enea LINX team

LINXSTAT(1) manual page

Example 114

LINX_TYPES.H(3) manual page

Name

linx_types.h - data types for LINX

Synopsis

#include <linx_types.h>

Description

In addition to the definitions below, the linx_types.h includes the system headers <stdint.h>, <stdlib.h> and
<linux/types.h>.

This linx_types.h header may be included automatically by the linx.h header file.

The header file contains the following definitions of LINX types and constants:

LINX
The LINX handle, returned from linx_open(3) . It is used to access the LINX endpoint with all other
LINX API fuctions.

LINX_FALSE
defined to 0.

LINX_TRUE
defined to 1.

LINX_ILLEGAL_ATTREF
defined to ((LINX_OSATTREF)0). It can be returned instead of a valid LINX_OSATTREF value,
e.g. from linx_attach(3) .

LINX_ILLEGAL_SPID
defined to ((LINX_SPID)0). It can be returned instead of a valid LINX_SPID value, e.g. from
linx_get_sped(3) .

LINX_NIL
defined to ((union LINX_SIGNAL *) 0). This null pointer value indicates that a signal pointer no
longer points to any buffer, e.g. after freeing the signal buffer.

LINX_OS_ATTACH_SIG
defined to ((LINX_SIGSELECT)252). This is the reserved signal number of the default attach signal
used if the application does not provide a signal with the linx_attach(3) call.

LINX_OS_HUNT_SIG
defined to ((LINX_SIGSELECT)251). This is the reserved signal number of the default hunt signal
used if the application does not provide a signal with the linx_hunt(3) call.

LINX_OSATTREF
A uint32_t used for attach references.

LINX_OSBOOLEAN
An int used for boolean operations.

LINX_OSBUFSIZE
An ssize_t used for signal buffer sizes.

LINX_OSTIME
A uint32_t used for time in micro-seconds (us).

LINX_SIGSELECT
A uint32_t used for signal numbers.

LINX_SPID

LINX_TYPES.H(3) manual page

LINX_TYPES.H(3) manual page 115

A uint32_t used for LINX endpoint binary identifiers (also called spid).
LINX_SIG_OPT_END

A define used as endmark in the taglist parameter list, passed in the linx_send_w_opt(3) call.
LINX_SIG_OPT_OOB

A define used for OOB signaling in the taglist parameter list, passed in the linx_send_w_opt(3) call.
LINX_SIG_ATTR_OOB

Is an attribute of a received signal that was sent OOB. Defined to 1.

The following LINX definition is not explicitely done in this header file, but is used in the LINX API.

union LINX_SIGNAL
is an opaque structure, containing any signal buffer of any size, with a 32-bit signal number of type
LINX_SIGSELECT in the first four bytes. This signal number can be accessed as the sig_no struct
member of the signal buffer. The application allocates various sized signal buffers with linx_alloc(3) ,
which returns a union LINX_SIGNAL *.

See Also

linx(7) , linx_alloc(3) , linx_attach(3) , linx_get_spid(3) , linx_hunt(3) , linx_open(3)

Author

Enea LINX team

LINX_TYPES.H(3) manual page

Description 116

MKETHCON(1) manual page

Name

mkethcon - create LINX Ethernet connections.

Synopsis

mkethcon [OPTIONS] <connection>

Description

Create a LINX Ethernet connection to a remote node.

Options

-h, --help
Display help and exit.

Mandatory options
-m, --mac=MAC address

Specify the remote MAC address of the node to connect to, e.g. 0a:1b:2c:3d:4d:5e.
-i, --if=interface

Specify the Ethernet interface to use, e.g. eth0.
Optional options
--window_size=nnn

This is the send/receive window_size, in number of packets on the link, and may need to be modified
to adapt LINX to really slow or really fast Ethernet performance.
Both the local and remote side negotiate the window size, being the smallest of the two sizes the
selected one. The default 128 messages should be sufficient in most configurations. The window size
shall always be of a power of 2. Size 0 means to use the default window size.

--defer_queue_size=nnn
The defer queue size is in packages, with the size depending on the LINX link. The defer queue is
used on the sender side when the send queue is full. Every message sent, when the send queue is full,
is stored in the defer queue, until the send queue has room for more messages. The defer queue size is
the maximum number of packages, with messages, that can be stored in the defer queue before the
link is disconnected, due to lack or resources. The default value 2048 packages should be sufficient in
most systems. Size 0 means to use the default defer queue size.

--send_tmo=nnn
The send acknowledge timeout specifies the time (in msec) to wait until unacknowledged messages
are resent. The default 10 should be sufficient in most systems. Tmo 0 means to use the default
timeout.

--nack_tmo=nnn
The retransmission timeout specifies the time (in msec) to wait until nack messages are resent. The
default 20 should be sufficient in most systems. Tmo 0 means to use the default timeout.

--conn_tmo=nnn
The connect timeout specifies the time (in msec) to wait until an attempt to establish a connection is
considered failed. The default 200 should be sufficient in most systems. Tmo 0 means to use the
default timeout.

--live_tmo=nnn
The connection supervision timeout specifies the time (in msec) to wait until a connection is
considered broken. Default is 100 (when the system is not idle) and should be sufficient in most

MKETHCON(1) manual page

MKETHCON(1) manual page 117

systems. When the system is idle, the live timeout is ten times larger than the configured live timeout
value. Tmo 0 means to use the default timeout.

--mtu=nnn
The MTU (Maximum Transmission Unit) specifies the size in bytes of the largets packet that the
Ethernet protocol can pass onwards (this excludes the size of the Ethernet header). If not set the MTU
is fetched from the interface. Typcially a MTU of 1500 bytes is used for Ethernet.

Files

None.

Diagnostics

None.

Known Bugs

None.

Examples

mkethcon --mac=01:23:a4:4f:b3:ac --if=eth0 ethcon_A
mkethcon -m 01:23:a4:4f:b3:ac -i eth0 ethcon_A

See Also

linx(7) , linxcfg(1) , linxstat(1) , linxdisc(8) , mklink(1) , rmethcon(1)

Author

Enea LINX team

MKETHCON(1) manual page

Options 118

MKLINK(1) manual page

Name

mklink - create LINX links.

Synopsis

mklink [OPTIONS] <link>

Description

Create a LINX link to a remote node.

Options

-h, --help
Display help and exit.

-a, --attributes=<attributes>
Specify an optional cookie that is returned unmodified in the new_link signal. The new_link signal is
sent to link supervisor(s) when the link is available.

-c, --connection=<connection>
Specify the connection(s) that this link should use. This option can be repeated if a link should use
more than one connection. Note that the connection(s) must be created before they can be assigned to
a link. The connection name is made up of two parts, see example. The first part identifies the CM
and the second part is the name that was used in the CM specific create command.

Files

None.

Diagnostics

None.

Known Bugs

None.

Examples

mkethcon --mac=01:23:a4:4f:b3:ac --if=eth0 ethcon_A
mklink --connection=ethcm/ethcon_A link_A
mkethcon --mac=01:23:a4:4f:b3:ac --if=eth0 ethcon_A
mktcpcon tcpcon_A
mklink -c ethcm/ethcon_A -c tcpcm/tcpcon_A link_A

MKLINK(1) manual page

MKLINK(1) manual page 119

See Also

linx(7) , linxcfg(1) , mkethcon(1) , mktcpcon(1) , rmlink(1)

Author

Enea LINX team

MKLINK(1) manual page

See Also 120

MKTCPCON(1) manual page

Name

mktcpcon - create LINX TCP/IP connections.

Synopsis

mktcpcon [OPTIONS] <connection>

Description

Create a LINX TCP/IP connection to a remote node.

Options

-h, --help
Display help and exit.

-i, --ipaddr=<IP address>
The IP address to connect to, e.g. 192.168.0.12.

-t, --live_tmo=<size>
The live_tmo parameter is the time in milliseconds between every heartbeat that is used to detect if
the connection has gone down. The default value is 1000 ms.

-n, --use_nagle=<bool>
Set to 1 if nagle algorithm shall be used on the socket for the connection. Default is off.

-s, --silent
Silent mode.

Files

None.

Diagnostics

None.

Known Bugs

None.

Examples

mktcpcon --ipaddr=192.168.0.12 tcpcon_A

MKTCPCON(1) manual page

MKTCPCON(1) manual page 121

See Also

linx(7) , linxcfg(1) , mklink(1) , rmtcpcon(1)

Author

Enea LINX

team

MKTCPCON(1) manual page

See Also 122

RBLOG(3) manual page

Name

rblog - write to ram ringbuffer log

Synopsis

#include <rblog.h>

int rblog(const char *fmt, ...);

Description

Write a new message into the ring buffer. Older messages successively gets overwritten when the writing
wraps around.

The function parameters fmt and ... follows the same format as the parameters to printk, i.e. a format string
and optional data parameters.

Notes

A maximum of 1024 bytes including null terminator will be written.

This function is reentrant and can be called in atomic context.

Return Value

rblog() returns the number of characters written to the log after format conversions.

RBLOG(3) manual page

RBLOG(3) manual page 123

RBLOG_CREATE(3) manual page

Name

rblog_create - initialize ram ringbuffer log

Synopsis

#include <rblog.h>

int rblog_create(size_t size);

Description

Allocate memory (at least size bytes; the value is rounded up to fit a whole number of memory pages), register
file for reading the log in /proc, and register SysRq keys for printing the log to console. The name of the /proc
file used and which keys are use for printing can be selected with #defines in rblog.h. size must be at least 1.

Return Value

rblog_create() returns 0 if successful, or a negative error value otherwise.

Errors

EPERM The buffer is already initialized, or size is less than 1.

ENOMEM Memory allocation for the buffer failed, or not enough memory to create /proc file entry.

rblog_create() can also return any error value returned by register_sysrq_key().

RBLOG_CREATE(3) manual page

RBLOG_CREATE(3) manual page 124

RBLOG_DESTROY(3) manual page

Name

rblog_destroy - remove ring buffer

Synopsis

#include <rblog.h>

void rblog_destroy(void);

Description

rblog_destroy() unregisters SysRq keys and the /proc file registered by rblog_create(), and frees the memory
allocated for the log. After rblog_destroy() is called, rblog_create() can be called again to create a new log
buffer.

RBLOG_DESTROY(3) manual page

RBLOG_DESTROY(3) manual page 125

RBLOG-EXTRACT(1) manual page

Name

rblog-extract - extract ram ringbuffer log from ELF core file

Synopsis

rblog-extract

core-file

Description

rblog-extract searches the memory segments of the given ELF core file for valid rblog structs, and (optionally)
saves the log contents to file. The ELF core file should have been produced by Kdump after a kernel panic on
a kernel where an rblog is being used (see the section BACKGROUND below).

Notes

rblog-extract can read both 32- and 64-bit ELF files; however, the width of pointers and 'int's must be the
same on the crashed machine and the machine running rblog-extract. rblog-extract will detect if this is not the
case and exit with an error.

rblog-extract will not run (or compile) on non-Linux platforms; it uses Linux's definition of ELF files and also
the Linux 'stat' system call.

Background

If a kernel has crashed it can be very desirable to save the memory image of the crashed environment. This
gives the possibility to debug it afterwards to (hopefully) find the cause of the problem. The kexec and kdump
tools can be used to load and execute a new kernel from an existing kernel. This second kernel, called a
"capture kernel" or "panic kernel", is executed after the first (running) kernel has crashed. In the environment
of the second kernel, the memory of the first kernel can be accessed.

This is an example of manual usage. You only need to have the kexec-tools package installed:

1.
Add "crashkernel=64M@16M" option to your bootloader configuration and reboot.

2.
Load the panic kernel with, for example:

kexec -p /boot/vmlinuz-2.6.22.17-0.1-default \

--initrd=/boot/initrd-2.6.22.17-0.1-default \

--append="root=/dev/sda5 1 irqpoll maxcpus=1"

The command line should include the root file system (root=), the irqpoll and reset_devices options and
should end with the runlevel you would like to have in the kdump environment (probably 1). Use "man
kexec" to see all options.

RBLOG-EXTRACT(1) manual page

RBLOG-EXTRACT(1) manual page 126

Now, if we get a crash, the "capture" (or "panic") kernel will be executed, and an ELF core file named
"vmcore" that contains the memory segments of the crashed kernel will be saved in /var/log/dump/$date$time
for later analysis.

Author

Enea LINX team

RBLOG-EXTRACT(1) manual page

Background 127

RMETHCON(1) manual page

Name

rmethcon - remove LINX Ethernet connections.

Synopsis

rmethcon [OPTIONS] <connection>...

Description

Remove the LINX Ethernet connections. Make sure that the connection is not assigned to any link before it is
removed (i.e. remove the link first).

Options

-h, --help
Display help and exit.

Files

None.

Diagnostics

None.

Known Bugs

None.

Examples

rmethcon ethcon_A (or rmethcon ethcm/ethcon_A)
rmethcon ethcon_A ethcon_B

See Also

linx(7) , linxcfg(1) , mkethcon(1) , rmlink(1)

Author

Enea LINX

team

RMETHCON(1) manual page

RMETHCON(1) manual page 128

RMETHCON(1) manual page

Author 129

RMLINK(1) manual page

Name

rmlink - remove LINX links.

Synopsis

rmlink [-ahs] link...

Description

Remove LINX links and optionally any connections that they uses.

Options

-a, --all
Remove all, i.e. both the link and its assigned connection(s) are removed. This is the preferred
method. If this option isn't used, any connections assigned to the link must be removed with a separate
command, e.g. rmethcon, rmtcpcon, etc.

-h, --help
Display help and exit.

-s, --silent
Silent mode.

Files

None.

Diagnostics

None.

Known Bugs

None.

Examples

rmlink -a link_A
rmlink link_A link_B

See Also

linx(7) , linxcfg(1) , mklink(1) , rmlink(1)

RMLINK(1) manual page

RMLINK(1) manual page 130

Author

Enea LINX

team

RMLINK(1) manual page

Author 131

RMTCPCON(1) manual page

Name

rmtcpcon - remove LINX TCP/IP connections.

Synopsis

rmtcpcon [OPTIONS] <connection>...

Description

Remove LINX TCP/IP connections. Make sure that the connection is not assigned to any link before it is
removed (i.e. remove the link first).

Options

-h, --help
Display help and exit.

Files

None.

Diagnostics

None.

Known Bugs

None.

Examples

rmethcon tcpcon_A
rmethcon tcpcon_A tcpcon_B

See Also

linx(7) , linxcfg(1) , mktcpcon(1) , rmlink(1)

Author

Enea LINX

team

RMTCPCON(1) manual page

RMTCPCON(1) manual page 132

Copyright

Copyright (c) 2006-2007, Enea Software AB All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of Enea Software AB nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

RMTCPCON(1) manual page

Author 133

	LINX(7) manual page
	LINX_ALLOC(3) manual page
	LINX_ATTACH(3) manual page
	LINX_CANCEL_TMO(3) manual page
	LINXCFG(1) manual page
	LINX_CLOSE(3) manual page
	LINX_CREATE_ETH_LINK(3) manual page
	LINX_CREATE_TCP_LINK(3) manual page
	LINX_DESTROY_ETH_LINK(3) manual page
	LINX_DESTROY_TCP_LINK(3) manual page
	LINX_DETACH(3) manual page
	LINXDISC(8) manual page
	LINXDISC.CONF(5) manual page
	LINX_FREE_BUF(3) manual page
	LINX_FREE_NAME(3) manual page
	LINX_FREE_STAT(3) manual page
	LINX_GET_DESCRIPTOR(3) manual page
	LINX_GET_NAME(3) manual page
	LINX_GET_SPID(3) manual page
	LINX_GET_STAT(3) manual page
	LINX.H(3) manual page
	LINX_HUNT(3) manual page
	LINX_HUNT_FROM(3) manual page
	LINXLS(1) manual page
	LINX_MODIFY_TMO(3) manual page
	LINX_OPEN(3) manual page
	LINX_RECEIVE(3) manual page
	LINX_RECEIVE_FROM(3) manual page
	LINX_RECEIVE_W_TMO(3) manual page
	LINX_REQUEST_TMO(3) manual page
	LINX_SEND(3) manual page
	LINX_SENDER(3) manual page
	LINX_SEND_W_OPT(3) manual page
	LINX_SEND_W_S(3) manual page
	LINX_SET_SIGSIZE(3) manual page
	LINX_SIGATTR(3) manual page
	LINX_SIGSIZE(3) manual page
	LINXSTAT(1) manual page
	LINX_TYPES.H(3) manual page
	MKETHCON(1) manual page
	MKLINK(1) manual page
	MKTCPCON(1) manual page
	RBLOG(3) manual page
	RBLOG_CREATE(3) manual page
	RBLOG_DESTROY(3) manual page
	RBLOG-EXTRACT(1) manual page
	RMETHCON(1) manual page
	RMLINK(1) manual page
	RMTCPCON(1) manual page

