
LINX for Linux User's Guide
1. LINX Overview

1.1 Introduction♦ 
1.2 LINX Concepts♦ 

• 

2. Installation• 
3. Building LINX• 
4. Using LINX

4.1 LINX Endpoints♦ 
4.2 LINX Signals♦ 
4.3 Hunting for an Endpoint♦ 
4.4 Attaching to an Endpoint♦ 
4.5 Inter-node Communication♦ 
4.6 Virtual Endpoints♦ 
4.7 Out-of-band signaling♦ 

• 

5. Getting Started
5.1 Loading the LINX Kernel Modules♦ 
5.2 Creating Links

5.2.1 Normal case - one link over one connection◊ 
5.2.2 Out-of-band - one link over two connections◊ 

♦ 

5.3 Running the LINX Example Application♦ 

• 

6. LINX Utilities
6.1 mklink♦ 
6.2 rmlink♦ 
6.3 mkethcon♦ 
6.4 rmethcon♦ 
6.5 mktcpcon♦ 
6.6 rmtcpcon♦ 
6.7 linxdisc♦ 
6.8 linxstat♦ 
6.9 linxgws♦ 
6.10 linxgwcmd♦ 
6.11 LINX Message Trace♦ 

• 

7. LINX Kernel Module Configuration• 
8. LINX Statistics

8.1 Per-endpoint Statistics♦ 
8.2 Ethernet CM Statistics♦ 

• 

9. Where to Find More Information
9.1 Reference Documentation♦ 
9.2 LINX Protocols♦ 
9.3 The LINX Project♦ 
9.4 Other Information♦ 

• 

Document version: 2.1.0

Copyright © Enea Software AB 2006-2008.

Enea®, Enea OSE®, and Polyhedra® are the registered trademarks of Enea AB and its subsidiaries. Enea
OSE® ck, Enea OSE® Epsilon, Enea® Element, Enea® Optima, Enea® LINX, Enea® Accelerator,
Polyhedra® FlashLite, Enea® dSPEED, Accelerating Network Convergence™, Device Software
Optimized™, and Embedded for Leaders™ are unregistered trademarks of Enea AB or its subsidiaries. Linux
is a registered trademark of Linus Torvalds. Any other company, product or service names mentioned in this
document are the registered or unregistered trademarks of their respective owner.
The source code included in LINX for Linux is released partly under the GPL (see COPYING file) and partly

LINX for Linux User's Guide

LINX for Linux User's Guide 1



under a BSD type license - see license text in each source file.

Disclaimer: The information in this document is subject to change without notice and should not be construed
as a commitment by Enea Software AB.

LINX for Linux User's Guide

LINX for Linux User's Guide 2



1. LINX Overview

1.1 Introduction

LINX is an open inter-process communications (IPC) protocol, designed to be platform and interconnect
independent. It enables applications to communicate transparently regardless of whether they are running on
the same CPU or are located on different nodes in a cluster. Any type of cluster configuration is supported,
from a single multi-core board to large systems with many nodes interconnected by any network topology.
LINX is based on the traditional message passing technology used in the Enea OSE / OSEck family of
real-time operating systems.

LINX consists of a set of Linux kernel modules, a LINX library to be linked with applications and a few
command tools for configuration of inter-node links and statistics reports.

There is one main LINX kernel module that implements the IPC mechanisms and the Rapid Link Handler
(RLNH) protocol, which allows LINX functionality to span multiple nodes transparently over logical links.
To use LINX for inter-node communication, a Connection Manager (CM) kernel module that supports the
underlying interconnect must be loaded as well. Currently, LINX contains two CMs, one for raw Ethernet and
one for TCP/IP. The CM is located below the main LINX kernel module in the protocol stack and its main
task is to provide reliable, in-order delivery of messages. LINX can be adapted to any underlying transport by
adding new CMs.

The RLNH protocol and the CM protocols are specified in a separate document (see section 9.2) .

The LINX kernel module provides a standard socket based interface using its own protocol family,
PF_LINX.

The LINX library provides a set of function calls to applications. Application programmers should normally
use the LINX API provided by this library, but it is possible to use the underlying socket interface too if
necessary. Information on how to use the socket interface directly is found in the LINX reference
documentation.

1.2 LINX Concepts

Endpoint An endpoint is an entity which can participate in LINX communication. Each
endpoint is assigned a name by the application creating it.

SPID A binary identifier assigned to each endpoint by LINX. The SPID is used to refer to
an endpoint when communicating with it.

LINX Signal Endpoints communicate by exchanging messages called LINX signals. When
sending a LINX signal, the application specifies the SPID of the destination
endpoint.

Connection A LINX connection provides reliable, in-order delivery of LINX data between two
nodes over an underlying media or protocol stack.

Connection Manager A LINX component that implements support for setting up connections over a
particular type of interconnect.

Link A logical association between two LINX nodes. Each link uses an underlying
connection as transport. LINX IPC services are transparent across links.

Hunting A LINX mechanism that allows applications to look up the SPID of an endpoint by
name. A LINX signal is sent back to the application when a matching endpoint is
found or created. Applications can search for endpoints on remote nodes by
specifying a path of links to traverse.

LINX for Linux User's Guide

1. LINX Overview 3



Attaching A LINX mechanism that allows application to supervise endpoints in order to find
out when they are terminated. A LINX signal is sent back to the application when the
supervised endpoint is terminated.

LINX for Linux User's Guide

1.2 LINX Concepts 4



2. Installation

Download the LINX distribution linx-n.n.n.tar.gz, where n.n.n is the LINX version. See section 9.3
for information on where to download LINX. Extract the contents of the archive at a suitable place in your
Linux system:

   $ tar –zxvf linx-n.n.n.tar.gz

This creates a LINX directory called linx-n.n.n/. The file linx-n.n.n/doc/index.html contains
pointers to all documentation available in the release. Make sure to read the README, RELEASE_NOTES and
Changelog files for information about this version. Reference documentation is available as man pages and
in HTML format. There is also a document describing the LINX protocols.

The following is found under the top level LINX directory:

Makefile, config.mk,
common.mk

Make files for building LINX

COPYING, MANIFEST, README,
RELEASE_NOTES

Licensing, readme, release notes.

bmark/ Example benchmark application
doc/ LINX documentation
drivers/ Dummy network driver for LINX message trace
example/ Example client/server application
include/ LINX include files
liblinx/ LINX library source code
linxcfg/, linxdisc/,
linxstat/, linxgw/

LINX commands source code

net/linx/ LINX source code
patch/ Patches for libpcap and tcpdump
scripts/ Build scripts

LINX for Linux User's Guide

2. Installation 5



3. Building LINX

To build LINX self hosted, e.g. for the running kernel, just go to the top level LINX directory and do make:

   $ cd /path/to/linx-n.n.n/
   $ make

This will build the entire LINX package.

Note that headers in the target Linux kernel source tree must be available to be able to compile LINX. This is
needed also when compiling for the running Linux kernel.

Cross-compiling LINX for another target requires a few variables to be set, either as environment variables or
by changing the config.mk file in the top level LINX directory. The following is needed:

ARCH – Target architecture, e.g. ppc• 
CROSS_COMPILE – Cross compiler tool prefix, e.g. powerpc-linux-• 
KERNEL – Kernel source tree• 

In addition, the PATH environment variable must be set to reach the cross compiler tool kit. When this has
been set up correctly, go to the top level LINX directory and do make.

When building the entire LINX package, the following is built:

In net/linx/
The LINX kernel module, linx.ko♦ 
The LINX Ethernet Connection Manager kernel module, linx_eth_cm.ko♦ 
The LINX TCP Connection Manager kernel module, linx_tcp_cm.ko♦ 

• 

In lib/ (created)
The LINX library, liblinx.a♦ 
The LINX configuration library, libcfg.a♦ 

• 

In bin/ (created)
The mklink command for creating links♦ 
The rmlink command for destroying links♦ 
The mkethcon command for creating connections using the LINX Ethernet Connection
Manager.

♦ 

The rmethcon command for destroying connections created with the mkethcon command.♦ 
The mktcpcon command for creating connections using the LINX TCP Connection
Manager.

♦ 

The rmtcpcon command for destroying connections created with the mktcpcon command.♦ 
The linxdisc daemon for dynamic LINX topology setup♦ 
The linxgws daemon for connecting to applications using the Gateway protocol.♦ 
The linxgwcmd command for listing Gateway servers.♦ 
The linxstat command for LINX statistics♦ 
(Also the linxcfg command for creating connections and links - will be removed in a
future release.)

♦ 

• 

In drivers/net
The LINX message trace dummy network driver, linxtrace.ko♦ 

• 

In example/bin (created)
LINX example application binaries, linx_basic_client and linx_basic_server♦ 

• 

In bmark/bin (created)
A simple benchmark application, linx_bmark♦ 

• 

LINX for Linux User's Guide

3. Building LINX 6



4. Using LINX

This section describes the fundamental concepts of LINX communication. The examples show how to use the
LINX API, defined in the file linx.h.

See section 5 for information on how to load and configure LINX for your system.

4.1 LINX Endpoints

An application that wants to communicate using LINX first creates a LINX endpoint by calling
linx_open(). linx_open() assigns a name to the endpoint, the name is a null-terminated string. The
name is not required to be unique. On Linux, the name may be of any length, but note that there may be
restrictions on other platforms. One thread may own multiple LINX endpoints simultaneously.

   LINX *client = linx_open("client", 0, NULL);

LINX assigns each endpoint a binary identifier called a SPID. The SPID is used to refer to the endpoint when
communicating with it. SPIDs are unique within the node on which they are created.

Each endpoint is internally associated with a LINX socket. An application can obtain the socket descriptor of
a LINX endpoint using the linx_get_descriptor() call if needed, e.g. for generic poll() or
select() calls together with other descriptors. Note that a LINX socket descriptor retrieved this way must
not be closed by calling close().

A LINX endpoint is closed by calling linx_close(). This frees all resources owned by the endpoint. If a
thread exits, all of its owned LINX endpoints will automatically be closed.

4.2 LINX Signals

Applications communicate by exchanging messages called LINX signals between endpoints. A LINX signal
buffer contains a mandatory leading 4 byte signal number, optionally followed by data that the sender wishes
to convey to the destination. Thus, the minimum size of a LINX signal is 4 bytes. Signal numbers are used to
identify different types of signals and are mainly defined by applications. The signal number range
0x10000000 to 0xFFFFFFFF is available for user applications.

New LINX signals are easily defined. It is simply a matter of declaring a struct (see the example below). Each
application shall also declare the union LINX_SIGNAL type to contain all LINX signals used in that
particular application. LINX signals shall be cast to pointers to this generic structure in LINX API function
calls.

   #define REQUEST_SIG 0x10000001 /* Signal number */
   #define REPLY_SIG   0x10000002

   struct request_sig
   {
      LINX_SIGSELECT sig_no;
      int code;
   }

   struct reply_sig
   {
      LINX_SIGSELECT sig_no;
      int status;
   }

LINX for Linux User's Guide

4. Using LINX 7



   union LINX_SIGNAL
   {
      LINX_SIGSELECT     sig_no;
      struct request_sig request;
      struct reply_sig   reply;
   };

Before a LINX signal can be sent, it must be allocated and initialized. The linx_alloc() call returns a
LINX signal buffer and initializes the signal number with a provided value.

   union LINX_SIGNAL *sig;

   sig = linx_alloc(endpoint, sizeof(struct request_sig), REQUEST_SIG);
   sig->request.code = 1;

The returned LINX signal buffer is owned by the LINX endpoint that allocated it and may not be used by
other endpoints. Sending a LINX signal transfers its ownership to the destination endpoint. A LINX signal is
never shared between different threads or endpoints. When a LINX signal buffer is not needed anymore, it
should be freed by calling linx_free_buf().

Before sending a LINX signal, the SPID of the destination endpoint must be known. LINX provides a method
to obtain the SPID of an endpoint by searching for its name, this is called hunting and is described in the next
section. The receiver of a LINX signal can look up the SPID of the sender using the linx_sender() call.
When the destination SPID is known, the LINX signal can be sent:

   linx_send(endpoint, &sig, server_spid);

Transferred LINX signals are stored in a receive queue associated with the destination endpoint. The
destination endpoint chooses when to receive a LINX signal and what signal numbers to accept at any given
time. This means that an endpoint may choose to receive LINX signals in a different order than they were
sent, based on signal number filtering. A received LINX signal may be reused, for example to send a reply, if
the buffer is large enough. Just overwrite the signal number field with the new value.

   union SIGNAL *sig;
   LINX_SIGSELECT any_sig[]= { 0 }; /* Signal filter. Here any signal is allowed */

   linx_receive(endpoint, &sig, any_sig);

LINX provides automatic endian conversion of the signal number if needed when a LINX signal is sent to an
endpoint located on a remote node. The rest of the signal data is not converted, this must be taken care of in
the applications.

4.3 Hunting for an Endpoint

Before sending a LINX signal, the sender must know the SPID of the destination endpoint. The SPID of a
peer endpoint is obtained by asking LINX to hunt for its name using the linx_hunt() call. When the peer
endpoint has been found, LINX makes sure that a LINX signal is sent to the hunting endpoint. This LINX
signal appears to have been sent from the found peer endpoint, i.e the SPID can be obtained by looking at the
sender of the LINX signal. The hunting endpoint may provide a LINX signal to be sent back when the sought
endpoint has been found. If no LINX signal is provided, a default LINX signal of type
LINX_OS_HUNT_SIG is sent instead.

   union SIGNAL *sig;
   LINX_SPID server_spid;
   LINX_SIGSELECT sig_sel_hunt = { 1, LINX_OS_HUNT_SIG };

   linx_hunt(endpoint, "server", NULL);
   linx_receive(endpoint, &sig, sig_sel_hunt);

LINX for Linux User's Guide

4.2 LINX Signals 8



   server_spid = linx_sender(endpoint, &sig);

If the peer endpoint does not exist when hunted for, LINX stores the hunt internally as pending. The LINX
hunt signal is sent back to the hunting endpoint when an endpoint with matching name is created.

If there are several LINX endpoints with the same name, it is not defined which one is used to resolve a hunt
call.

4.4 Attaching to an Endpoint

If a LINX endpoint sends a LINX signal to another endpoint, but the receiving endpoint has terminated for
some reason, the LINX signal will be thrown away (freed) by LINX.

LINX provides a mechanism to supervise a peer endpoint, i.e. to request notification of when it is terminated.
The linx_attach() call is used to attach to an endpoint. When a supervised endpoint terminates, LINX
makes sure that a LINX signal is sent back to the supervising endpoint. This LINX signal appears to have
been sent from the supervised (terminated) endpoint, i.e the SPID can be obtained by looking at the sender of
the LINX signal. The endpoint that attaches may provide a LINX signal to be sent back when the supervised
process terminates. If no LINX signal is provided, a default LINX signal of type LINX_OS_ATTACH_SIG is
sent instead.

   linx_attach(endpoint, server_spid, NULL);

If the supervising endpoint wants to resume communication, it should issue a new hunt for the peer endpoint
name, in order to be notified when a new endpoint with the same name is found or created.

4.5 Inter-node Communication

LINX endpoints are able to communicate transparently regardless of whether they are located on the same
node or on different nodes interconnected in some way in a LINX cluster. A cluster may use different
operating systems that support LINX – a LINX endpoint on a Linux node may for example communicate with
a process on a connected DSP running the Enea OSEck real-time operating system.

A LINX cluster should be seen as a logical network established between a set of nodes interconnected by
some underlying transport that is supported by LINX, such as Ethernet. For two nodes to be able to
communicate, a LINX link must first be established between them. Each node may set up any number of links
to other nodes which are directly reachable on the underlying transport. Links can be manually set up by using
the mkethcon or mktcpcon and the mklink command, or dynamically established using the LINX
discovery daemon, linxdisc.

Each link has a name that is unique within the node. The name of a link may be (and usually is) different on
the two sides of the link, i.e. the link between nodes A and B may be called “LinkToB” on A and “LinkToA”
on B. Often the link name is the same as the name of the remote node connected via the link.

Note that nodes do not have addresses in LINX. To reach a remote node, the complete path of link names
to be used is specified.

To hunt for a LINX endpoint located on a remote node, the name of the endpoint is prepended with the path of
link names that shall be used to reach that node, separated by “/”.

Example:

Hunting for “LinkToB/LinkToC/EndpointName” tells LINX to search for “EndpointName” on the node two
hops away from us that is reachable by traversing first “LinkToB” and then “LinkToC”.

LINX for Linux User's Guide

4.3 Hunting for an Endpoint 9



4.6 Virtual Endpoints

Since LINX SPIDs are unique within a single node only, it is not possible to address remote endpoints by
using their remote SPIDs directly. LINX inter-node communication is based on automatic creation of local
virtual endpoints that represent remote endpoints. Each LINX endpoint involved in inter-node
communication has a virtual endpoint, internally created by LINX, representing it on the peer node. A virtual
endpoint acts as a proxy for a particular remote endpoint and is communicated with in the same way as
normal (user-created) endpoints. This way, applications do not need to know the true SPIDs of endpoints on
other nodes - they always communicate with local virtual endpoints, which have local SPIDs. The life span of
a virtual endpoint matches the life span of the remote endpoint it represents.

A LINX signal sent to a virtual endpoint is intercepted by LINX and automatically forwarded to the remote
node where the endpoint it represents is located. On the destination node, LINX delivers the LINX signal to
its intended destination and makes it appear as if it was sent from a virtual endpoint representing the true
sender.

A LINX signal received from an endpoint on a remote node always appears to have been sent from the
corresponding local virtual endpoint.

Virtual endpoints are created by LINX when needed, typically when a remote hunt call has been made and the
peer endpoint has been found (or created) on the remote node. Virtual endpoints use the same naming syntax
as the hunt path described above. This means that when LINX creates a virtual endpoint, the pending hunt
request for its name are resolved and the hunt LINX signal is sent to the hunting endpoint from the SPID of
the virtual endpoint.

LINX also creates virtual endpoints representing links to remote nodes. These endpoints carry the same name
as the link, prepended with "/". An application can monitor the state of a link by hunting for and attaching to
the virtual endpoint representing it.

When an endpoint terminates, LINX makes sure that all virtual endpoints representing it on remote nodes are
terminated too (so that attach LINX signals are sent to supervising endpoints). If a remote node is shut down
or becomes unreachable, LINX will detect this and terminate all virtual endpoints that represent endpoints
located on that node.

Example:

An application on node A hunts for "LinkToB/server". This tells LINX to search for the endpoint "server" on
node B, reachable by traversing link "LinkToB". When an endpoint named "server" has been found (or
created) on B, LINX creates a virtual endpoint on node A named "LinkToB/server" and sends the hunt LINX
signal from this virtual endpoint to the hunting endpoint. After receiving the hunt LINX signal, the application
is able to communicate with the remote endpoint "server" on node B by sending LINX signals to the virtual
endpoint "LinkToB/server".

Note that the scenario above will also create a virtual endpoint named "LinkToA/client" on node B (if "client"
is the name of the hunting endpoint and "LinkToA" is the name of the link on node B).

4.7 Out-of-band signalling

LINX has from version 2.1 and forth support for out-of-band signalling, enabling the user to set an
out-of-band attribute on signals when sending them. LINX will make a best-effort attempt to deliver any
out-of-band signals ahead of normal (in-band) signals between two LINX endpoints. LINX does not guarantee
that out-of-band signals really are delivered before in-band signals. Except being able to be delivered ahead of
in-band signals, out-of-band signals follow the same rules as internal signals, delivery is guaranteed and the
order in which out-of-band signals are sent is kept on the receiving side, i.e. two out-of-band signals sent one

LINX for Linux User's Guide

4.6 Virtual Endpoints 10



after the other are guaranteed to arrive in the same order on the receiver.

If the receiving side should have no support for out-of-band signalling, i.e. an older version of LINX, the
signal will be treated in-band.

Out-of-band signals can be sent both intranode and internode. In the intranode case the signal is put in the
receiver's in-queue ahead of in-band signals but not before any out-of-band signals already in the queue.
When sending out-of-band signals internode the out-of-band attribute is passed down to the connection layer
and it is up to the connection layer if it chooses to treat out-of-band signals differently than in-band signals,
trying to deliver them "faster" than in-band signals.

Upon receiving a signal the user can find out if the received signal has the out-of-band attribute set.

LINX has from version 2.1 and forth support for tying two separate connections to one logical link. When
doing so one of the connections is used for in-band signals while the other connection is used for out-of-band
signalling. The two connections can be over different media and the link is considered in the state up only
when both connections are in state connected. If one of the connections is disconnected the link is considered
down, thus no fail-over is done.

LINX for Linux User's Guide

4.7 Out-of-band signalling 11



5. Getting Started

5.1 Loading the LINX Kernel Modules

To enable LINX, simply load the LINX kernel module into the Linux kernel (requires root permissions):

   $ insmod net/linx/linx.ko

Applications are now able to use LINX, but only to communicate within the node.

To use LINX for communication between several interconnected nodes, also load the appropriate LINX
Connection Manager kernel module depending on which underlying transport to use. LINX currently supports
raw Ethernet and TCP/IP.

To use raw Ethernet as transport, load the Ethernet CM kernel module:

   $ insmod net/linx/linx_eth_cm.ko

To use TCP/IP as transport, load the TCP CM kernel module:

   $ insmod net/linx/linx_tcp_cm.ko

5.2 Creating Links

5.2.1 Normal case - one link over one connection

To setup a LINX cluster with two participating nodes, here called A and B, start by installing the appropriate
kernel modules as described above on both nodes. Then use the connection manager specific setup tool to
create a connection on each node to create a connection to the other node and then the mklink command on
both nodes to create a logical link. To destroy a link the rmlink command is used.

Older versions of LINX used the linxcfg tool which created both the connection and link at the same time.
The linxcfg tool is delivered with this package for backwards compatibility but will be removed in
upcomming releases. For documentation of the linxcfg tool see the man-page for linxcfg. See the linxcfg(1).

It is up to each connection manager to provide a tool for setting up a connection. The LINX release contains
Ethernet and TCP connection managers, their corresponding tools for creating and destroying connections are
mkethcon, rmethcon, mktcpcon and rmtcpcon.

When using Ethernet, the MAC address of the remote node, the device name to use and a suitable link name
shall be provided.

On node A (replace the MAC address with the actual value on node B):

   $ ./bin/mkethcon --mac=00:18:4D:72:13:1B --if=eth0 ConnToB
   $ ./bin/mklink --connection=ethcm/ConnToB LinkToB

On node B (replace the MAC address with the actual value on node A):

   $ ./bin/mkethcon --mac=00:0C:6E:C3:FB:A2 --if=eth0 ConnToA
   $ ./bin/mklink --connection=ethcm/ConnToA LinkToA

When using TCP/IP, the IP address of the remote node and a suitable link name shall be provided:

LINX for Linux User's Guide

5. Getting Started 12



On node A (replace the IP address with the actual value on node B):

   $ ./bin/mktcpcon --ipaddr=192.168.1.2 ConnToB
   $ ./bin/mklink --connection=tcpcm/ConnToB LinkToB

On node B (replace the IP address with the actual value on node A):

   $ ./bin/mktcpcon --ipaddr=192.168.1.1 ConnToA
   $ ./bin/mklink --connection=tcpcm/ConnToA LinkToA

After these steps, the LINX cluster is available and applications can communicate with each other
transparently, regardless of on which node they are located.

5.2.2 Out-of-band - one link over two connections

LINX supports one logical link over two connections, the connection managers do not need to aware of this
and connections are setup the same way as before. Then the mklink tool is used to tie two connections to one
logical link. The connections does not need to be on the same media.

In this example a logical link is setup between node A and node B using the Ethernet Connection Manager
and VLAN. The non-VLAN connection will be used for in-band signalling and the VLAN connection for
out-of-band siganlling. The order in which the connections are passed in on the command line to mklink
determines which connection will be used for out-of-band, the first connection is used for in-band and the
second for out-of-band.

On node A (replace the MAC address and IP address to that of node B):

   $ /sbin/vconfig add eth0 5
   $ /sbin/ifconfig eth0.5 up
   $ ./bin/mkethcon --mac=00:18:4D:72:13:1B --if=eth0 EthConnToB
   $ ./bin/mkethcon --mac=00:18:4D:72:13:1B --if=eth0.5 VlanEthConnToB
   $ ./bin/mklink --connection=ethcm/EthConnToB --connection=ethcm/VlanEthConnToB LinkToB

On node B (replace the MAC address and IP address to that of node A):

   $ /sbin/vconfig add eth0 5
   $ /sbin/ifconfig eth0.5 up
   $ ./bin/mkethcon --mac=00:0C:6E:C3:FB:A2 --if=eth0 EthConnToA
   $ ./bin/mkethcon --mac=00:0C:6E:C3:FB:A2 --if=eth0.5 VlanEthConnToA
   $ ./bin/mklink --connection=ethcm/EthConnToA --connection=ethcm/VlanConnToA LinkToA

Now all in-band signals sent over the link LinkToA will be sent on the non-VLAN Ethernet connection and
all out-of-band signals will be sent on the VLAN Ethernet connection.

5.3 Running the LINX Example Application

The LINX example application is found in the example/ directory. It is a simple client / server based
application that serves both as an introduction to the LINX API programming model, and as a quick way of
testing that LINX is up and running in a system with one or more nodes.

See above for information on how to build the LINX kernel modules and binaries (including the example).

Doing make example in the top level LINX directory builds only the example. This produces two
executables in the example/bin directory: linx_basic_client and linx_basic_server.

The actual operation of the application is simple; the client sends LINX signals to the server and the server
sends reply LINX signals back. There can be any number of clients distributed on different nodes. Each client

LINX for Linux User's Guide

5.2.1 Normal case - one link over one connection 13



will hunt for the server, either on a given link name (path of link names) or on the local machine if no
linkname is provided. The server can be terminated and restarted, the clients use LINX attach to detect when
the server disappears and will resume operation when the server is available again.

To run the example on a single node, the followings steps are needed:

Build LINX1. 
Load the LINX kernel module into the kernel2. 
Start the example server in the background: example/bin/linx_basic_server &3. 
Start the example client: example/bin/linx_basic_client4. 

To run the example on two nodes, the following steps are needed:

Build LINX1. 
Load the LINX kernel module on both nodes2. 
Load the appropriate LINX CM kernel module on each node3. 
On each node, use the mkethcon/mktcpcon and mklink commands to establish the link4. 
On one node, start the example server: example/bin/linx_basic_server5. 
On the other node, start the example client: example/bin/linx_basic_client linkname
Where linxname is either LinkToA or LinkToB according to the link names given above in 5.2).

6. 

LINX for Linux User's Guide

5.3 Running the LINX Example Application 14



6. LINX Utilities

Description of the tools provided with this release.

6.1 mklink

The mklink command creates LINX links to remote nodes. The connection(s) must already be created by
the Connection Manager used. The type of connection(s) used is transparent for the mklink. A logical LINX
link can use two connections, one for normal signalling and one for out-of-band signalling, the first
connection on the command-line will used for in-band and the second for out-of-band signalling.

Example:

   $ ./bin/mklink --connection=ethcm/eth_connA linkA

Example with two links, the first for in-band and second for out-of-band signalling:

   $ ./bin/mklink --connection=ethcm/eth_connA --connection=ethcm/eth_connA_2 linkA

The mklink command must be used on both participating nodes for a link to be established.

See the mklink(1) reference documentation for details.

6.2 rmlink

The rmlink command is used to destroy links created by the mklink command, both sides must run this
command.

Example:

   $ ./bin/rmlink linkA

See the rmlink(1) reference documentation for details.

6.3 mkethcon

The mkethcon command is used to create Ethernet Connections to remote nodes. The connection name is
then used as a handle when creating a LINX link.

Example:

   $ ./bin/mkethcon --mac=01:23:45:67:89:A0 --if=eth0 eth_connA

The mkethcon command must be used on both participating nodes for a Ethernet connection to be
established.

See the mkethcon(1) reference documentation for details.

6.4 rmethcon

The rmethcon command is used to destroy connections created by the mkethcon command, both sides
must run this command.

LINX for Linux User's Guide

6. LINX Utilities 15



Example:

   $ ./bin/rmethconn eth_connA

See the rmethcon(1) reference documentation for details.

6.5 mktcpcon

The mkethcon command is used to create TCP Connections to remote nodes. The connection name is then
used as a handle when creating a LINX link.

Example:

   $ ./bin/mktcpcon --ipaddr=12.34.56.78 tcp_connA

The mktcpcon command must be used on both participating nodes for a TCP connection to be established.

See the mktcpcon(1) reference documentation for details.

6.6 rmtcpcon

The rmtcpcon command is used to destroy connections created by the mktcpcon command, both sides
must run this command.

Example:

   $ ./bin/rmtcpconn tcp_connA

See the rmtcpcon(1) reference documentation for details.

6.7 linxdisc

On Ethernet, a LINX cluster can be automatically established and supervised by running the linxdisc
daemon on all participating nodes. The daemon periodically broadcasts advertisements and waits for
advertisements from remote nodes. Each node advertises a cluster name and a node name. These values are
defined in a configuration file provided to linxdisc. Each cluster and each node must have a unique name.
The configuration file also defines filtering rules for which network interfaces to use and which remote node
names to connect to. When an advertisement is received from a node that belongs to the same cluster and is
allowed according to the node name filtering rules, a link is automatically set up between the nodes.

See the linxdisc(8) and linxdisc.conf(5) reference documentation for details.

6.8 linxstat

LINX status information can be fetched from the LINX kernel module and displayed using the linxstat
command. Status is shown for local and virtual (remote) endpoints as well as links to other nodes. The
information includes names, SPIDs, queued LINX signals and pending hunts and attaches. See the linxstat(1)
reference documentation for details.

6.9 linxgws

In Linx for Linux 2.2 the LINX Gateway was added allowing connectivity between Linux applications using
the Gateway client protocol to LINX systems. The Gateway Server runs as a daemon and is started on the
command line, configuration is done using a configuration file. The default location is /etc/linxgws.conf but

LINX for Linux User's Guide

6.4 rmethcon 16



can also be specified at startup. The LINX Gateway Server, its configuration and the Gateway Client are
described in detail in the Users Guide for the LINX Gateway.

Example:

   $ ./bin/linxgws 

See the linxgws(8) and linxgws.conf(5) reference documentation for details.

6.10 linxgwcmd

The linxgwcmd tool is used to discover Gateway servers within the current UDP broadcast domain. Can also
be used to test connectivity towards a Gateway server and also simple benchmarking.

Example: list all Gateway servers broadcasting on port 30000

   $ ./bin/linxgwcmd -l -b udp://*:30000

Example: connect to a Gateway server named "default_gws" and echo 10 signals of 100 bytes each.

   $ ./bin/linxgwcmd -s default_gws -e10,100

See the linxgwcmd(1) reference documentation for details.

6.11 LINX Message Trace

When using an external protocol analyzer such as tcpdump, only LINX messages sent between nodes are
visible. Intra-node transmissions never reach the point where the Linux kernel duplicates messages for
listening protocol analyzers (the Linux General Device Driver Interface). LINX provides a feature to make
these messages visible as well. This is done by duplicating all LINX signals that are sent within LINX to a
special dummy network driver called linx0.

There are also patches for tcpdump and libpcap included in the LINX release (since LINX 1.2). These
patches make tcpdump and libpcap understand the messages that are sent to linx0.

To start using LINX message trace, the following steps are required:

Compile the LINX kernel module with the LINX_MESSAGE_TRACE=yes option and load it into
the kernel.

1. 

Compile the LINX dummy network driver and load it into the kernel. Enable it by doing: ifconfig
linx0 up

2. 

Compile tcpdump and libpcap with the patches provided in the LINX release patch/ directory.3. 
Start tcpdump and configure it to listen on linx0.4. 

LINX for Linux User's Guide

6.9 linxgws 17



7. LINX Kernel Module Configuration

Parameters can be passed to the LINX kernel module at load time. Example:

   $ insmod linx.ko linx_max_links=64

To list available parameters and types, the modinfo command can be used:

   $ modinfo -p linx.ko

The following parameters can be passed to the LINX kernel module:

linx_max_links

The maximum number of links that can be established to remote nodes. When the limit is reached, LINX will
refuse to create new links. The default value is 32 and the maximum value is 1024.

linx_max_sockets_per_link

The maximum number of endpoints (sockets) that are allowed to communicate over one link. If the limit is
exceeded, the link will be disconnected and reestablished. The value must be a power of 2. The default value
is 1024 and the maximum value is 65536.

linx_max_spids

The maximum number of LINX endpoints (sockets) that can be created. When the limit is reached, LINX will
refuse to create new endpoints. The value must be a power of 2. The default value is 512 and the maximum
value is 65536.

linx_max_attrefs

The maximum number of pending attaches. When the limit is reached, attach() calls will fail. The value needs
to be a power of 2. The default value is 1024 and the maximum value is 65536.

linx_max_tmorefs

The maximum number of timeout references. When the limit is reached, linx_request_tmo() will fail.
The value must be a power of 2. The default value is 1024 and the maximum value is 65536.

linx_sockbuf_size

Speficies the send and receive buffer queue size of a LINX socket. This value is passed to the socket struct
fields socket->sk_sndbuf and socket->sk_rcvbuf, which control the memory a socket may use for sending and
receiving packages. The default value and maximum value is 1073741824.

LINX for Linux User's Guide

6.11 LINX Message Trace 18



8. LINX Statistics

8.1 Per-endpoint Statistics

Statistics per endpoint can be enabled at compile-time for the LINX kernel module with the -DSOCK_STAT
build flag.

Statistics are collected for both ordinary and virtual LINX endpoints, as well as for links, independent of
which Connection Manager is used. The results can be found in the procfs file system in the file
/proc/net/linx/sockets and are also available through the linx_get_stat() function call or by
using the linxstat -S command.

The following statistics are presented:

no_recv_bytes Number of received bytes
no_sent_bytes Number of sent bytes
no_recv_signals Number of received LINX signals
no_sent_signals Number of sent LINX signals
no_recv_remote_bytes Number of bytes received from remote endpoints.
no_sent_remote_bytes Number of bytes sent to remote endpoints.
no_recv_remote_signals Number of LINX signals received from remote endpoints.
no_sent_remote_signals Number of LINX signals sent to remote endpoints.
no_recv_local_bytes Number of bytes received from local endpoints.
no_sent_local_bytes Number of bytes sent to local endpoints.
no_recv_local_signals Number of LINX signals received from local endpoints.
no_sent_local_signals Number of LINX signals sent to local endpoints.
no_queued_bytes Number of bytes waiting in the receive queue of the endpoint.
no_queued_signals Number of LINX signals waiting in the receive queue of the endpoint.

A sent LINX signal is shown as queued until the destination application has received it with a
linx_receive() call (or a recvfrom() / recvmsg() if using the socket interface directly). When a
hunt for a remote endpoint is resolved, the hunt reply will be counted as a “received remote” LINX signal
even though the hunt reply itself is not sent over the link. From the LINX endpoints perspective, the hunt
reply is received from a virtual endpoint which represents a remote endpoint. The same applies to attach
LINX signals from virtual endpoints.

When a LINX endpoint is destroyed, so are the statistics for that endpoint. If an application needs to save the
statistics, it should do so before calling linx_close() (or close() if using the socket interface directly).

8.2 Ethernet CM Statistics

Statistics can be enabled at compile-time for the LINX Ethernet Connection Manager by using the following
flags when building LINX:

-DSTAT_SEND_PKTS
Shows the number of sent packets per link, stored in /proc/net/linx/cm/eth/send_pkts

-DSTAT_RECV_PKTS
Shows the number of received packets per link, stored in
/proc/net/linx/cm/eth/recv_pkts

LINX for Linux User's Guide

7. LINX Kernel Module Configuration 19



-DSTAT_SEND_PKTS
Shows the number of sent packets per link, stored in /proc/net/linx/cm/eth/send_pkts

-DSTAT_RECV_PKTS
Shows the number of received packets per link, stored in
/proc/net/linx/cm/eth/recv_pkts

-DSTAT_SEND_RETRANS
Shows the number of received packets per link, stored in
/proc/net/linx/cm/eth/send_retrans

-DSTAT_BASIC
Turns on all of the above statistics fields.

LINX for Linux User's Guide

8.2 Ethernet CM Statistics 20



9. Where to Find More Information

9.1 Reference Documentation

The reference manuals can be found under the doc/ directory, in the man1 - man8 subdirectories. The
linx(7) manual page is the top document. To be able to read the reference documentation with the man
command in Linux, the path to the LINX doc/ directory needs to be added to the MANPATH environment
variable. Alternatively, index.html in the LINX doc/ directory contains pointers to HTML version of the
reference manual pages, which have been generated from the man page format files.

The LINX API is described in the reference manual pages, see linx.h(3) and linx_types.h(3).

How to use the LINX socket interface directly is described in the linx(7) manual page.

The mklink(1), rmlink(1), mkethcon(1), rmethcon(1), mktcpcon(1), rmtcpcon(1) commands, the linxdisc(8)
daemon and the linxstat(1) command and the soon to be depricated linxcfg(1) command are also described in
reference manual pages.

9.2 LINX Protocols

Specifications of all LINX protocols for inter-node communication are found in the separate LINX protocols
document.

9.3 The LINX Project

The LINX project can be found on SourceForge on the following addresses:

http://linx.sourceforge.net - LINX Home page.• 
http://sourceforge.net/projects/linx - latest software version and more information.• 

Email: linx@enea.com

9.4 Other Information

See www.enea.com for more general information about LINX. You will find a LINX Datasheet, the LINX
protocols described, Questions & Answers about LINX and other information.

LINX for Linux User's Guide

9. Where to Find More Information 21

http://linx.sourceforge.net/
http://sourceforge.net/projects/linx
mailto:linx@enea.com
http://www.enea.com/

	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1
	LINX User's Guide - Document v2.2.1

