
LINX Protocols

Document Version 21

LINX Protocols

Copyright

Copyright © Enea Software AB 2009.

Disclaimer

The information in this User Documentation is subject to change without notice, and should not be construed as a commitment of
Enea Software AB.

Trademarks

Enea®, Enea OSE®, and Polyhedra® are the registered trademarks of Enea AB and its subsidiaries. Enea OSE®ck, Enea OSE®
Epsilon, Enea® Element, Enea® Optima, Enea® LINX, Enea® Accelerator, Polyhedra® FlashLite, Enea® dSPEED, Accelerating
Network Convergence™, Device Software Optimized™, and Embedded for Leaders™ are unregistered trademarks of Enea AB or
its subsidiaries. Any other company, product or service names mentioned in this document are the registered or unregistered trademarks
of their respective owner.

iiDocument Version 21© Enea Software AB 2011

LINX Protocols

Table of Contents
1 - Introduction to the LINX Protocol ... 5

1.1 - Abstract .. 5
1.2 - Document Revision History .. 5
1.3 - Definitions and Acronyms .. 5

2 - Overview of the LINX Protocol ... 7
3 - LINX Protocols ... 9

3.1 - LINX Link Creation and Initialization .. 9
3.2 - RLNH Feature Negotiation ... 9
3.3 - Publication of Names .. 9
3.4 - Remote Name Lookup ... 10
3.5 - Link Supervision ... 10
3.6 - Protocol Messages .. 10

3.6.1 - RLNH_INIT .. 10
3.6.2 - RLNH_INIT_REPLY .. 10
3.6.3 - RLNH_PUBLISH .. 11
3.6.4 - RLNH_QUERY_NAME .. 11
3.6.5 - RLNH_UNPUBLISH .. 12
3.6.6 - RLNH_UNPUBLISH_ACK ... 12
3.6.7 - RLNH_PUBLISH_PEER ... 12

4 - Enea LINX Connection Manager Protocols ... 14
4.1 - Connection Establishment .. 14
4.2 - Reliable Message Passing ... 14
4.3 - Connection Supervision ... 14

5 - Enea LINX Ethernet Connection Manager ... 15
5.1 - Protocol Descriptions ... 15

5.1.1 - Enea LINX Ethernet Connection Manager Headers ... 15
5.1.2 - Enea LINX Connect Protocol .. 16
5.1.3 - Enea LINX User Data Protocol ... 20
5.1.4 - Enea LINX Reliability Protocol ... 21
5.1.5 - Enea LINX Connection Supervision Protocol ... 23

5.2 - LINX Discovery Daemon ... 24
5.2.1 - Linxdisc protocol ... 25

6 - Enea LINX Point-To-Point (PTP) Connection Manager .. 27
6.1 - Protocol Description .. 27

6.1.1 - Enea LINX Point-To-Point Connection Manager Headers 27
6.1.2 - PTP Connection Supervision Protocol .. 30

7 - Enea LINX TCP Connection Manager ... 31
7.1 - TCP CM Protocol Descriptions .. 31

7.1.1 - TCP Connection Manager Headers .. 31
7.1.2 - TCP CM Connection Supervision Protocol .. 32

8 - Enea LINX Gateway Protocol ... 33
8.1 - Gateway Protocol Description ... 33

8.1.1 - Generic Request/Reply Header .. 34
8.1.2 - Interface Request/Reply Payload ... 34
8.1.3 - Create Request/Reply Payload .. 34
8.1.4 - Destroy Request/Reply Payload ... 35
8.1.5 - Send Request/Reply Payload .. 35
8.1.6 - Receive Request/Reply Payload .. 35
8.1.7 - Hunt Request/Reply Payload .. 36
8.1.8 - Attach Request/Reply Payload .. 36
8.1.9 - Detach Request/Reply Payload .. 37
8.1.10 - Name Request/Reply Payload ... 37

iiiDocument Version 21© Enea Software AB 2011

LINX Protocols

9 - Enea LINX Shared Memory Connection Manager ... 38
9.1 - Protocol Description .. 38

9.1.1 - Shared Memory Protocol Headers .. 38
9.1.2 - SHM Connection Protocol Description ... 39

10 - Enea LINX RapidIO Connection Manager .. 41
10.1 - Protocol Description .. 41

10.1.1 - LINX RapidIO Connection Establishment Algorithm 41
10.1.2 - Enea LINX RapidIO User Data Protocol ... 44
10.1.3 - Enea LINX RapidIO Connection Supervision Protocol 47

11 - Enea LINX Connection Manager Control Layer .. 49
11.1 - Protocol Description .. 49

11.1.1 - LINX CMCL Connection Establishment Algorithm 49
11.1.2 - Enea LINX CMCL User Data ... 49
11.1.3 - Enea LINX CMCL Connection Supervision Protocol 50

Index .. 51

ivDocument Version 21© Enea Software AB 2011

LINX Protocols

1. Introduction to the LINX Protocol

1.1 Abstract

This document describes the Enea® LINX protocols, used in Enea LINX. See the Revision History section
(and document header line) for the version of this document.

LINX is a distributed communication protocol stack for transparent inter node and inter process commu-
nication for a heterogeneous mix of systems.

1.2 Document Revision History

Status and DescriptionDateAuthorRevi-
sion

Added riocm protocol description.2010-02-16wivo20

Added shmcm protocol description.2009-12-03tomk19

Converted document from xhtml to Docbook XML.2009-03-23lejo18

Added LINX Gateway protocol.2009-03-09tomk17

Updated TCP CM protocol with OOB.2008-07-10wivo16

Updated Ethernet protocol with OOB.2008-05-13wivo15

Document updates in RLNH and Ethernet protocol.2007-11-05debu14

Updated Linxdisc protocol descrition.2007-09-25debu13

Added feature negotiation. Increased rlnh version to 2 and
ethcm version to 3.

2007-09-24mwal12

Added TCP CM ver.22007-09-20lejo,wivo11

Approved. Added PTP CM ver.12007-08-29zalpa,lejo10

Added copyright on front page. Cleaned out prerelease
entries of document history.

2006-10-25lejo9

Converted document from Word to XHTML.2006-10-13lejo8

Added reserved field in UDATA Header, Fixed bug in MAIN
header.

2006-09-13jonj7

Fixed a few bugs, improved RLNH protocol description.2006-09-11jonj6

Approved. Updated after review (internal reference ida
010209).

2006-08-05jonj5

1.3 Definitions and Acronyms

Definitions

A The active (initiating) side in a protocol exchange.

B The passive (responding) side in a protocol exchange.

CM Connection Manager, the entity implementing the transport layer of the Enea
LINX protocol.

5Document Version 21© Enea Software AB 2011

1. Introduction to the LINX ProtocolLINX Protocols

Endpoint A (part of) an application that uses the Enea LINX messaging services.

Connection An association between Connection Managers.

Connection ID A key used by Ethernet Connection Managers to quickly lookup the destina-
tion of an incoming packet. Connection ID based lookup is much efficient
than MAC-address based lookup.

Connection Manager A Connection Manager provides reliable communication for message passing.
The connection layer roughly corresponds to layer four, the transport layer,
in the OSI model.

Abbreviations

IPC Inter Process Communication.

PDU Protocol Data Unit..

6Document Version 21© Enea Software AB 2011

1. Introduction to the LINX ProtocolLINX Protocols

2. Overview of the LINX Protocol
Enea LINX is an open technology for distributed system IPC which is platform and interconnect independent,
scales well to large systems with any topology, but that still has the performance needed for high traffic
bearing components of the system. It is based on a transparent message passing method.

Figure 2.1 LINX Architecture

Enea LINX provides a solution for inter process communication for the growing class of heterogeneous
systems using a mixture of operating systems, CPUs, microcontrollers DSPs and media interconnects such
as shared memory, RapidIO, Gigabit Ethernet or network stacks. Architectures like this poses obvious
problems, endpoints on one CPU typically uses the IPC mechanism native to that particular platform and
they are seldom usable on platform running other OSes. For distributed IPC other methods, such as TCP/IP,
must be used but that comes with rather high overhead and TCP/IP stacks may not be available on small
systems like DSPs. Enea LINX solves the problem since it can be used as the sole IPC mechanism for
local and remote communication in the entire heterogeneous distributed system.

The Enea LINX protocol stack has two layers - the RLNH and the Connection Manager, or CM, layers.
RLNH corresponds to the session layer in the OSI model and implements IPC functions including methods
to look up endpoints by name and to supervise to get asynchronous notifications if they die. The Connection
Manager layer corresponds to the transport layer in the OSI model and implements reliable in order trans-
mission of arbitrarily sized messages over any media.

7Document Version 21© Enea Software AB 2011

2. Overview of the LINX ProtocolLINX Protocols

RLNH is responsible for resolving remote endpoint names, and for setting up and removing local repres-
entations of remote endpoints. The RLNH layer provides translation of endpoint OS IDs from the source
to the destination system. It also handles the interaction with the local OS and applications that use the
Enea LINX messaging services. RLNH consists of a common, OS independent protocol module and an
OS adaptation layer that handles OS specific interactions.

The Connection Manager provides a reliable transport mechanism for RLNH. When the media is unreliable,
such as Ethernet, or have other quirks the Connection Manager must implement means like flow control,
retransmission of dropped packets, peer supervision, and becomes much more complex. On reliable media,
such as shared memory or RapidIO, Connection Managers can be quite simple.

The rest of this document contains a detailed description of the protocols used by the RLNH and the CM
layers of Enea LINX. Chapter 3 describes the RLNH protocol. Chapter 4 describes features shared by all
Connection Managers, i.e. what RLNH requires from a Connection Manager. The description is intentionally
kept on a high level since the functionality actually implemented in any instance of a CM depends very
much on the properties of the underlying media. It is the intention that when Connection Managers for
new media are implemented the protocols will be described in the following chapters. Finally Chapter 5
describes version two of the Ethernet Connection Manager protocol.

The table below shows how protocol headers are described. PDUs are sent in network byte order (e.g. big
endian). Bits and bytes are numbered in the order they are transmitted on the media. For example:

Table 2.1 Protocol Message Legend

313029282726252423222120191817161514131211109876543210

3210

ReservedThreeTwoOne

Four

The first row shows bit numbers, the second row byte numbers for those more comfortable with that view,
and the last row example protocol fields. In the header above, the fields in the header are sent in order:
one, two, three, reserved, four.

8Document Version 21© Enea Software AB 2011

2. Overview of the LINX ProtocolLINX Protocols

3. LINX Protocols
The LINX protocol (previously called RLNH protocol) is designed to be light-weight and efficient. The
RLNH-to-RLNH control PDUs are described in detail below. The required overhead associated with user
signal transmission is not carried in any dedicated RLNH PDU. Instead it is passed as arguments along
with the signal data to the Connection Manager layer, where an optimized transmission scheme and message
layout can be implemented based on knowledge of the underlying media and/or protocols. In particular
the source and destination link addresses are sent this way, the addresses identifies the sending and receiving
endpoints respectively. LINX protocol messages are sent with source and destination link addresses set to
zero (0).

3.1 LINX Link Creation and Initialization

The Connection Manager is initialized by RLNH. It is responsible for providing reliable, in-order delivery
of messages and for notifying RLNH when the connection to the peer becomes available / unavailable. An
RLNH link is created maps a unique name to a Connection Manager object.

As soon as the Connection Manager has indicated that the connection is up, RLNH transmits an RLNH_INIT
message to the peer carrying its protocol version number. Upon receiving this message, the peer responds
with an RLNH_INIT_REPLY message indicating whether it supports the given protocol version or not.
When remote and local RLNH versions differ the lowest of the two versions are used by both peers. If the
message exchange has been successfully completed, RLNH is ready to provide messaging services for the
link name. The RLNH protocol is stateless after this point.

3.2 RLNH Feature Negotiation

The RLNH Feat_neg_string is sent once by both peers to negotiate what features enable. It is contained in
the INIT_REPLY message. The RLNH Feat_neg_string contain a string with all feature names and corres-
ponding arguments. Only the features used by both peers (the intersection) are enabled. All the features
supported by none or one peer (the complement) are disabled by both peers. An optional argument can be
specified and It is up up to each feature how the argument is used and how the negotiation of the argument
is performed.

3.3 Publication of Names

RLNH assigns each endpoint a link address identifier. The association between the name of an endpoint
and the link address that shall be used to refer to it is published to the peer in an RLNH_PUBLISH message.
RLNH_PUBLISH is always the first RLNH message transmitted when a new endpoint starts using the
link.

Upon receiving an RLNH_PUBLISH message, RLNH creates a local representation of the remote name.
Local applications can communicate transparently with such a representation, but the signals are in reality
forwarded by RLNH to the peer system where the real destination endpoint resides (and the destination
will receive the signals from a representation of the true sender).

The link addresses of source and destination for each signal are given to the Connection Manager for
transmission along with the signal data and delivered to the peer RLNH. The link addressing scheme is
designed to enable O(1) translation between link addresses and their corresponding local OS IDs.

9Document Version 21© Enea Software AB 2011

3. LINX ProtocolsLINX Protocols

3.4 Remote Name Lookup

When a hunt call is performed for the name of a remote endpoint, the request is passed on by RLNH to
the peer as a RLNH_QUERY_NAME message. If the hunter has not used the link before, an RLNH_PUB-
LISH message is sent first.

Upon receiving a RLNH_QUERY_NAME message, RLNH resolves the requested endpoint name locally
and returns an RLNH_PUBLISH message when it has been found and assigned a link address. As described
above, this triggers the creation of a representation at the remote node. This in turn resolves the hunt call
- the hunter is provided with the OS ID of the representation.

3.5 Link Supervision

RLNH supervises all endpoints that use the link. When a published name is terminated, a RLNH_UNPUB-
LISH message with its link address is sent to the peer.

When a RLNH_UNPUBLISH message is received, RLNH removes its local representation of the endpoint
referred to by the given link address. When RLNH no longer associates the link address with any resources,
it returns a RLNH_UNPUBLISH_ACK message to the peer.

The link address can be reused after a RLNH_UNPUBLISH_ACK message.

3.6 Protocol Messages

3.6.1 RLNH_INIT

The RLNH_INIT message initiates link establishment between two peers. It is sent when the Connection
Manager indicates to RLNH that the connection is up.

Table 3.1 RLNH Init Header

313029282726252423222120191817161514131211109876543210

3210

TypeReserved

Version

Reserved Reserved for future use, must be 0.

Type Message type. The value of RLNH_INIT is 5.

Version The RLNH protocol version. The current version is 2.

3.6.2 RLNH_INIT_REPLY

During link set up, RLNH responds to the RLNH_INIT message by sending an RLNH_INIT_REPLY
message. The status field indicates whether the protocol is supported or not. The Feat_neg_string tells the
remote RLNH what features the local RLNH supports.

Table 3.2 RLNH Init Reply Header

313029282726252423222120191817161514131211109876543210

3210

TypeReserved

10Document Version 21© Enea Software AB 2011

3. LINX ProtocolsLINX Protocols

Status

Feat_neg_string (variable length, null-terminated string)

Reserved Reserved for future use, must be 0.

Type Message type. The value of RLNH_INIT_REPLY is 6.

Status Status code indicating whether the protocol version received in the RLNH_INIT
message is supported (0) or not (1).

Feat_neg_string String containing feature name and argument pairs. Example: "feature1:arg1,fea-
ture2:arg2\0".

3.6.3 RLNH_PUBLISH

The RLNH_PUBLISH message publishes an association between an endpoint name and the link address
that shall be used to refer to it in subsequent messaging. Upon receiving an RLNH_PUBLISH message,
RLNH creates a local representation of the remote name. This resolves any pending hunt calls for
link_name/remote_name.

Table 3.3 RLNH Publish Header

313029282726252423222120191817161514131211109876543210

3210

TypeReserved

Linkaddr

Name (variable length, null-terminated string)

Reserved Reserved for future use, must be 0.

Type Message type. The value of RLNH_PUBLISH is 2.

Linkaddr The link address being published.

Name The name being published..

3.6.4 RLNH_QUERY_NAME

The RLNH_QUERY_NAME message is sent in order to resolve a remote name. An RLNH_PUBLISH
message will be sent in response when the name has been found and assigned a link address by the peer.

Table 3.4 RLNH Query Name Header

313029282726252423222120191817161514131211109876543210

3210

TypeReserved

src_linkaddr

Name (variable length, null-terminated string)

Reserved Reserved for future use, must be 0.

Type Message type. The value of RLNH_QUERY_NAME is 1.

11Document Version 21© Enea Software AB 2011

3. LINX ProtocolsLINX Protocols

src_linkaddr Link address of the endpoint that issued the query.

Name The name to be looked up.

3.6.5 RLNH_UNPUBLISH

The RLNH_UNPUBLISH message tells the remote RLNH that the endpoint previously assigned the given
link-address has been closed.

Table 3.5 RLNH Unpublish Header

313029282726252423222120191817161514131211109876543210

3210

TypeReserved

Linkaddr

Reserved Reserved for future use, must be 0.

Type Message type. The value of RLNH_UNPUBLISH is 3.

Linkaddr The address of the closed endpoint.

3.6.6 RLNH_UNPUBLISH_ACK

The RLNH_UNPUBLISH_ACK message tells the remote RLNH that all associations regarding an unpub-
lished link address have been terminated. This indicates to the peer that it is ok to reuse the link address.

Table 3.6 RLNH Unpublish Ack Header

313029282726252423222120191817161514131211109876543210

3210

TypeReserved

Linkaddr

Reserved Reserved for future use, must be 0.

Type Message type. The value of RLNH_UNPUBLISH_ACK is 4.

Linkaddr The link address of the unpublished endpoint.

3.6.7 RLNH_PUBLISH_PEER

When a remote LINX endpoint is used as the sender in a send_w_sender() function call and the receiver
exists on the same node as the local LINX endpoint, the remote LINX endpoint is published as a remote
sender.

Table 3.7 RLNH Publish Peer Header

313029282726252423222120191817161514131211109876543210

3210

TypeReserved

Linkaddr

Peer_linkaddr

12Document Version 21© Enea Software AB 2011

3. LINX ProtocolsLINX Protocols

Reserved Reserved for future use, must be 0.

Type Message type. The value of RLNH_PUBLISH_PEER is 5.

Linkaddr The link address being published.

Peer_linkaddr The link address of the endpoint that previously published it self on the current link.

13Document Version 21© Enea Software AB 2011

3. LINX ProtocolsLINX Protocols

4. Enea LINX Connection Manager Protocols
This chapter describes in general terms the functionality a Connection Manager must provide.

A Connection Manager shall hide details of the underlying media, e.g. addressing, general media properties,
how to go about to establish connections, media aggregation, media redundancy and so on. A Connection
Manager shall support creation of associations, known as connections that are suitable for reliable message
passing of arbitrarily sized messages. A Connection Manager must not rely on implicit connection super-
vision since this can cause long delay between peer failure and detection if the link is idle. A message ac-
cepted by a Connection Manager must be delivered to its destination.

If, for any reason, a Connection Manager is unable to deliver a message RLNH must be notified and the
connection restarted since its state at this point is inconsistent.

Since Enea LINX runs on systems with very differing size, the Connection Manager protocol must be
scalable. A particular implementation may ignore this requirement either because the underlying media
doesn't support scalability or that a non-scalable implementation has been chosen. However, interfaces to
the Connection Manager and protocol design when the media supports big configuration shall not make
design decisions that prevents the system to grow to big configurations should the need arise.

Enea LINX must be able to coexist with other protocols when sharing media.

4.1 Connection Establishment

Creation of connections always requires some sort of hand shake protocol to ensure that the Connection
Manager at the endpoints agrees on communication parameters and the properties of the media.

4.2 Reliable Message Passing

A channel suitable for reliable message passing must appear to have the following properties:

• Messages are delivered in the order they are sent.
• Messages can be of arbitrary size.
• Messages are never lost.
• The channel has infinite bandwidth.

Although no medium has all these properties some come rather close and others simulate them by imple-
menting functions like fragmentation of messages larger than the media can handle, retransmission of lost
messages, and flow control i.e. don't send more than the other side can consume. If a Connection Manager
is unable to continue deliver messages according to these rules the connection must be reset and a notific-
ation sent to RLNH.

4.3 Connection Supervision

A distributed IPC mechanism should support means for applications to be informed when a remote endpoint
fails. Connection Managers are responsible for detecting when the media fails to deliver messages and
when the host where a remote endpoint runs has crashed. There are of course other reasons an endpoint
might fail to respond but in those situations the communication link continues to function and higher layers
in the LINX architecture manages supervision.

14Document Version 21© Enea Software AB 2011

4. Enea LINX Connection Manager ProtocolsLINX Protocols

5. Enea LINX Ethernet Connection Manager
This chapter describes version 3 of the Enea LINX Ethernet Connection Manager Protocol.

5.1 Protocol Descriptions

Enea LINX PDUs are stacked in front of, possible, user data to form an Enea LINX Ethernet packet. All
PDUs contain a field next header which contain the protocol number of following headers or the value -1
(1111b) if this is the last PDU. All headers except Enea LINX main header are optional. Everything from
the transmit() down call, including possible control plane signaling, from the RLNH layer is sent reliably
as user data. The first field in all headers is the next header field, having this field in the same place simplifies
implementation and speeds up processing.

If a malformed packet is received the Ethernet Connection Manager resets the connection and informs
RLNH.

When the Ethernet Connection Manager encounters problems which prevents delivery of a message or
part of a message it must reset the connection. Notification of RLNH is implicit in the Ethernet CM, when
the peer replies with RESET or, if the peer has crashed, the Connection Supervision timer fires.

5.1.1 Enea LINX Ethernet Connection Manager Headers

Version 3 of the Enea LINX Ethernet Connection Manager protocol defines these headers.

Table 5.1 Ethernet Connection Manager Protocol Headers

DefinitionValueProtocol number

Coreid header. Is used only in multicore enviroment. ETHCM_COREID

Main header sent first in all Enea LINX packets. ETHCM_MAIN

Connect header. Used to establish and tear down connections. ETHCM_CONN

User data header. All messages generated outside the Connection
Manager are sent as UDATA.

 ETHCM_UDATA

Fragment header. Messages bigger than the MTU are sent fragmented
and PDUs following the first carries the ETHCM_FRAG header instead
of ETHCM_UDATA.

 ETHCM_FRAG

Reliability header. Carries seqno and ackno. ACK doubles as empty
acknowledge PDU and ACK-request PDU, in sliding window manage-
ment and connection supervision.

 ETHCM_ACK

Request retransmission of one or more packets. ETHCM_NACK

Indicates that the current header is the last in the PDU. ETHCM_NONE

5.1.1.1 ETHCM_COREID Header

The ETHCM_COREID header is used only in a multicore enviroment.It carries the destination and the
source coreid. If the connection is established in a singlecore enviroment this header is missing.

Table 5.2 ETHCM Coreid header

313029282726252423222120191817161514131211109876543210

3210

ResScoreidDcoreidResNext

15Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

Next Next header, the protocol number of the following Enea LINX header or 1111b if last header.

Res Reserved for future use, must be 0.

Dcoreid Destination coreid, specify the remote coreid.

Scoreid Source coreid, specify the local coreid.

Res Reserved for future use, must be 0.

5.1.1.2 ETHCM_MAIN Header

The ETHCM_MAIN header is sent first in all Enea LINX PDU's. It carries protocol version number,
connection id, and packet size. Connection ID is negotiated when a connection is establish and is used to
lookup the destination for incoming packets.

Table 5.3 ETHCM Main header

313029282726252423222120191817161514131211109876543210

3210

Packet sizeRConn_IDResVerNext

Next Next header, the protocol number of the following Enea LINX header or 1111b if last
header.

Ver Enea LINX Ethernet Connection Manager protocol version. Version 3 decimal is cur-
rently used, 0 is illegal.

Res Reserved for future use, must be 0.

Conn_ID A key representing the connection, used for fast identification of destination of incoming
packets.

R Reserved for future use, must be 0.

Packet size Total packet size in bytes including this and all other headers.

5.1.2 Enea LINX Connect Protocol

The Enea LINX Connect Protocol is used to establish a connection on the Connection Manager level
between two peers A and B. A Connection Manager will only try to establish a connection or accept con-
nection attempt from a peer if it has been explicitly configured to do. After configuration a CM will
maintain connection with the peer until explicitly told to destroy the connection or an un-recoverable error
occurs.

If a Connect-message is received, with a version number different from 2, the Ethernet CM refuses to
connect.

The Connect Protocol determines Connection IDs to be used for this connection. Connection IDs are small
keys used by receivers to quickly lookup a packets destination. Each side selects the Connection ID to be
used by the peer when sending packets over the connection. The peer saves the ID and will use it for all
future communication. If a node has a lot of connections it may run out of available Connection IDs. In
this case the node sends Connection ID 0, which means no Connection ID and reverts to the slower MAC-
addressing mode to determine destination for incoming packets.

16Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

A window size options may be sent in the CONNECT-header to indicate how the sender configuration
deviates from the default. Deviations from default values are configured per connection in the create_conn()-
call.

Figure 5.1 Successful Connect

DISCONNECTED

A

B

CONN_CONNECT CONNECTING_1

DISCONNECTED CONN_CONNECT_ACK

CONNECTED

CONNECTING_2 CONNECTED

DISCONNECTED

A

B

CONNECTING_1

DISCONNECTED

CONN_CONNECT

CONN_CONNECT

CONNECTING_!

CONNECTING_1

CONN_CONNECT

CONN_RESET

DISCONNECTED

CONN_CONNECT

DISCONNECTED

Below, A starts first and tries to connect. B is not active, so the PDU is lost. A tries again..

Above, when B tries to connect to A, A is in the wrong state and sends RESET to synchronize

Tmo: A tries again

5.1.2.1 Connect Protocol

In the following protocol description the side initiating the connection is called A and the side responding
to the request is called B. All protocol transitions are supervised by a timer, if the timer fires before the
next step in the protocol have been completed the state machine reverts to state disconnected.

The Connect Protocol is symmetrical, there is no master and both sides try to initiate the connection. Col-
lisions, i.e. when the initial CONNECT PDU is sent simultaneously from both sides, are handled by the
protocol and the connection restarted after a randomized back of timeout.

5.1.2.2 Connect Protocol Description

Unless a Connection Manager has been configured to create a connection to a peer no messages are sent
and the Connection Manager doesn't respond to connection attempts.

A-side

• When a Connection Object is created at A by calling create_conn() A starts from DISCONNECTED
state, sends a CONNECT PDU to B and enters state CONNECTING_1.

a. If tmo, go back to step 1 and try again after a grace period.

17Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

b. If B replies with a CONNECT_ACK PDU, move to CONNECTED state, send ACK PDU to B,
notify RLNH that a connection have been established, and start the Connection Supervision function.

c. If any other PDU is received from B send RESET and go back to step 1 and try again after a short
grace period.

B-side

1. After configuration, B waits in state DISCONNECTED for a CONNECT PDU from A.

a. If a CONNECT PDU arrives, send a CONNECT_ACK PDU and go to state CONNECTING_2
b. If some other PDU arrives, send RESET to A and go back to step 2.

2. In state CONNECTING_2, B waits for an ACK PDU from A.

a. When CONN_ACK arrives, the connect protocol is complete, the Connection Manager notifies
higher layers that a connection have been established, and start the Connection Supervision function.

b. If some other PDU is received or the timer fires, send RESET and go to state DISCONNECTED

Allowed messages and state changes are summarized in this state diagram. The notation [xxx/yyy] means:
event xxx causes action yyy.

Figure 5.2 Connection protocol state diagram

CONNECTING_1 CONNECTING_2

DISCONNECTED

CONNECTED

[create_conn()/
CONN_CONNECT]

[CONN_CONNECT/
CONN_CONNECT_ACK]

[CONN_ACK/
connected()]

[CONN_CONNECT_ACK/
CONN_ACK, connected()]

If any other PDU than those
indicated are received, or
the connect timer fires,
a CONN_RESET is sent to
the peer and the state is
returned to DISCONNECTED

18Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

Figure 5.3 Disconnect state diagram

DISCONNECTED

CONNECTED

DISCONNECTING

[CONN_RESET/
-]

[ERROR/
CONN_RESET]

[CONN_RESET/
ERROR, CONN_RESET]

During an active disconnect,
the CM paus in disconnected
state until CONN_RESET
have been received, which
indicates that the peer have
disconnected or until super-
vision timer expires,
indicating that the peer have
crashed.

5.1.2.3 Feature Negotiation

A Feature Negotiation string is sent during connection establishment. The string is sent in the CONNECT
ACK and the ACK type of ETHCM_CONN messages; the other messages contain an empty string '\0').
The string contains all feature names and corresponding argument. Only the features used by both peers
(the intersection) are enabled. All the features supported by none or one peer (the complement) are disabled
by both peers. An optional argument can be specified and It is up up to each feature how the argument is
used and how the negotiation of the argument is performed.

5.1.2.4 ETHCM_CONN Header

The Connection header varies in size depending on the size of the address on the media, on Ethernet it is
16 bytes.

Table 5.4 ETHCM Connect header

313029282726252423222120191817161514131211109876543210

3210

Conn_IDReservedWindowSizeTypeNext

Dst media address followed by src media address

...

...

Feature Negotiation string (variable length, null-terminated string)

Next Next header, the protocol number of the following Enea LINX
header or 1111b if last header.

Type CONNECT. Start a connect transaction.
CONNECT ACK. Reply from passive side.
ACK. Confirm that the connection have been created.
RESET. Sent if any error occurs. Also sent if the next step in connect
protocol fails to complete within allowed time.

Size Media address size.

19Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

Window Window size. Power of 2, thus Window == 5 means a window of
25 == 32 packets.

Reserved Reserved for future use, must be 0.

Conn_ID Use this Connection ID. Informs peer which connection ID to use
when sending packets over this connection. Conn ID == 0, means
don't use Connection ID.

Dst and src media addresses Dst media address immediately followed by src media address.

Feature Negotiation string String containing feature name and argument pairs. Example: "fea-
ture1:arg1,feature2:arg2\0".

5.1.3 Enea LINX User Data Protocol

All messages originating outside the Connection Manger are sent as USER_DATA. There are two types
of USER_DATA header. The first type is used for messages not requiring fragmentation and for the first
fragment of fragmented messages. The second type is used for all remaining fragments.

5.1.3.1 User data and Fragmentation Protocol

A-side

1. Accept a new message from RLNH. Calculate how many fragments are required to send this message.

2. Frag_cnt = 0.

3. For each fragment in the message:

a. If first fragment send as USER_DATA else send as FRAG.
b. If only fragment set fragno to -1 else set fragno to frag_cnt and increment frag_cnt.
c. If last fragment set MORE to 0 else set MORE to 1.
d. Forward the packet to lower layer for transmission.
e. If last fragment go back to step 1

B-side

1. When a USER_DATA or a FRAG packet arrives.

2. If fragno = -1 (0x7fff) deliver() to RLNH since this is a complete message and wait for next packet.

3. If fragno ≠ -1 find the reassembly queue for this message and add the packet to the tail of the queue
(lower layers doesn't emit packets out-of-order). If the packet is the last fragment deliver the complete
message to RLNH else wait for next packet.

5.1.3.2 ETHCM_UDATA Header

Table 5.5 ETHCM User Data header

313029282726252423222120191817161514131211109876543210

3210

Frag noMReservedONext

Dst addr

20Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

Src addr

Next Next header, the protocol number of the following Enea LINX header or 1111b if last
header.

O OOB bit, the UDATA is out of band.

Reserved Reserved for future use, must be 0.

M More fragment follows.

Frag no Number of this fragment. Fragments are numbered 0 to (number of fragments - 1). Un-
fragmented messages have fragment number -1 (0x7fff).

Dst addr Opaque address (to CM) identifying the receiver.

Srd addr Opaque address identifying the sender.

5.1.3.3 ETHCM_FRAG Header

Table 5.6 ETHCM Fragment header

313029282726252423222120191817161514131211109876543210

3210

Frag noMReservedNext

Next Next header, the protocol number of the following Enea LINX header or 1111b if last
header.

Reserved Reserved for future use, must be 0.

M More fragment follows.

Frag no Number of this fragment. Fragments are numbered 0 to (number of fragments - 1). Un-
fragmented messages have fragment number -1 (0x7fff).

5.1.4 Enea LINX Reliability Protocol

The Connection Manager uses a selective repeat sliding window protocol with modulo m sequence numbers.
The ack header carries sequence and request numbers for all reliable messages sent over the connection.
Sequence and Request numbers are 12 bits wide and m is thus 4096.

In the Selective Retransmit Sliding Window algorithm the B-side explicitly request retransmission of
dropped packets and remembers packets received out of order. If the sliding window is full, the A-side
queues outgoing packets in a deferred queue. When space becomes available in the window (as sent
packets are acknowledged by B) packets are from the front of the deferred queue and sent as usual. A strict
ordering is maintained, as long as there are packets waiting in the deferred queue new packets from RLNH
are deferred, even if there is space available in the window.

5.1.4.1 Reliability Protocol Description

For sliding window operation the sender A have the variables SNmin and SNmax, SNmin points to the first un-
acknowledged packet in the sliding window and SNmax points at the next packet to be sent. In addition the
sliding window size is denoted n and size of sequence numbers are modulo m. The receiver side B maintains
a variable RN which denotes the next expected sequence number. In the protocol description, the sequence

21Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

number and the request number of a packet is called sn and rn respectively. The module number m must
be >= 2n. In version 2 of the Enea LINX Ethernet protocol m is 4096 and n is a power of 2 <= 128.
Drawing sequence number from a much larger space than the size of the window allows the reliability
protocol to detect random packets with bad sequence numbers.

At A, the algorithm works as follows:

1. Set modulo variables SNmin and SNmax to 0.

2. In A if a message is sent from higher layer or there are packets in the defer queue, and (SMmax - SNmin)
mod m < n, accept a packet into the sliding window set sn to SNmax and increment SNmax to (SNmax +
1) mod m. If (SNmax - SNmin) mod m >= n defer sending the packet, i.e. queue the packet until there is
room in the sliding window.

3. If an error free frame is received from B containing rn, and (RN - SNmin) mod m <= (RN - SNmax) mod
m, set SNmin to RN and remove packets with sn <= SNmin mod m from send queue.

4. If a NACK frame is received, retransmit NACKed packets in-order with rn set to RN.

5. At arbitrary times but within bounded delay after receiving a reliable packet from B and if there are
unacknowledged packets in the sliding window, send the first un-acked packet with rn, RN and the
request bit set.

The selective repeat algorithm at B:

1. Set the modulo m variable RN to 0.

2. When an error free frame is received from A containing sn equal to RN, release the packet as well
as following queued packets with consecutive sn to higher layer and increment RN to (last released
sn + 1) mod m.

3. When an error free frame is received from A containing sn in the interval RN < sn < RN + n, put the
packet in sequence number order in the receive queue and send NACK requesting retransmission of
sequentially dropped packets to A. The seqno field in the NACK frame shall contain RN and the
count field shall contain the number of missing packets.

4. At arbitrary times but within a bounded delay after receiving an error free frame from A transmit a
frame containing RN to A. If there are frames in the receive queue send a NACK indicating missing
frames.

Note that only user data is sent reliable, i.e. consume sequence numbers. ACKR, NACK and empty ACK
are unreliable messages sequence numbers are not incremented as they are sent.

5.1.4.2 ETHCM_ACK header

Table 5.7 ETHCM Ack header

313029282726252423222120191817161514131211109876543210

3210

SeqnoAcknoResRNext

Next Next header, the protocol number of the following Enea LINX header or 1111b if last header.

R ACK-request, peer shall respond with an ACK of its own as soon as possible. (Used during
connection supervision.)

22Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

Res Reserved for future use, must be 0.

Ackno Shall be set to the next expected or missing seqno from peer.

Seqno Incremented for every sent packet. Note that seqnos are set based on sent packets rather than
sent bytes as in TCP.

5.1.4.3 ETHCM_NACK header

NACK is sent when a hole in the stream of received reliable packets is detected. If a sequence of packets
is missing all are NACKed by the same NACK packet. A timer ensures that NACKs are sent as long as
there are out-of-order packets in the receive queue.

Table 5.8 ETHCM Nack header

313029282726252423222120191817161514131211109876543210

3210

SeqnoResCountReservedNext

Next Next header, the protocol number of the following Enea LINX header or 1111b if last
header.

Reserved Reserved for future use, must be 0.

Count Number of NACKed seqnos.

Res Reserved for future use, must be 0.

Seqno First NACKed seqno, the rest are assumed to follow consecutively seqno + 1, seqno + 2, ...
, seqno + count - 1.

5.1.5 Enea LINX Connection Supervision Protocol

The purpose of the Connection Supervision function is to detect crashes on the B-side. If B has been silent
for some time A sends a few rapid pings and, if B doesn't respond, A decides that B has crashed, notifies
higher layers, and initiates teardown of the connection. There is no separate PDU for the Connection Su-
pervision function, the ACKR header from the reliability protocol doubles as ping PDU.

5.1.5.1 Connection Supervision protocol description

A-side

When a connection has been established, the Ethernet Connection Manager initializes the Connection Su-
pervision function to state PASSIVE and starts a timer which will fire at regular interval as long as the
link is up.

1. When the timer fires, the Ethernet Connection Manager checks if packets have been received from
B since the last time the timer was active.

a. If yes, clear packets counter, set Connection Supervision state to PASSIVE and go to step 2.
b. If no, check if connection supervision is already in active state.

i. If no, enter state Active and send an ACKR to B.
ii. If yes, check if the ping limit has been reached.

A. If yes, the connection is down, notify higher layers and go to state Disconnected.
B. If no, resend ACKR and increment the ping counter.

23Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

2. Restart the timer.

3. If the connection is closed, stop the send timer.

B-side

• When an ACKR is received, reply to the sender with an empty ACK [RN,SNmax-1].

Figure 5.4 State diagram for Connection Supervision

Enter CONNECTED,
pkt_cnt = 0, start timer

tmo: if (pkt_cnt > 0) pkt_cnt = 0

tmo: if (live_cnt == 0) => send ACKR

tmo: if (sup_cnt < X) => send ACK
else disconnected()

Any incoming,
live cnt =0, start live timerAny incoming,

incr. live_cnt

Enter DISCONNECTED,
stop timer

It is possible to go to DOWN
directly from ACTIVE, it the
connection is destroyed.

DOWN PASSIVE ACTIVE

Figure 5.5 Connection supervision: the peer is down.

Tmo: Tmo:

A

B

[RN, SNmax -1]

Tmo:

[RN, SNmax -1]

if (pkt_cnt ==0 &&
ping_max == max)
Goto DISCONNECTED;

if (pkt_cnt == 0)
send ACKR [RN, SNmax -1];
ping_cnt++;
Request new timeout;

if (pkt_cnt == 0)
send ACKR [RN, SNmax -1];
ping_cnt = 0;
Go to ACTIVE state;
Request new timeout;

5.2 LINX Discovery Daemon

The LINX Discovery Daemon, linxdisc, automatically discovers LINX network topology and creates links
to other LINX hosts. Linxdisc finds LINX by periodically broadcasting and listen for LINX advertisement
messages on available Ethernet interfaces. When advertisements from other linxdiscs' arrive linxdisc ex-
amines the messages and if it passes a number of controls a LINX connection is created to the sending
host. When a collision occurs, i.e. two or more nodes advertising the same name, collision resolution
messages are exchanged to determine which node gets to remain in the cluster. The node that wins is the
one that has been up for the longest time, if the nodes can't agree which one has been up longest, the node
with the highest MAC-address wins. All Linxdisc messages from this version and forward carries a version
number. For this implementaition of Linxdisc all messages containg a higher version number are discarded,
allowing newer versions of Linxdisc to revert to version 1 of the Linxdisc protocol.

24Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

5.2.1 Linxdisc protocol

Connection procedure:

A-side

At startup read configuration file, build a list of all active interfaces, extract hostname and cluster name.

• Periodically broadcast advertisement messages on interfaces allowed by the configuration.

B-side

1. When an advertisement message arrives, linxdisc performs the following steps to determine whether
to connect to the sender:

a. Version number matches.
b. Not my own message, i.e. the sender address is the same as one of my interfaces.
c. Network cluster name is same as configuration.
d. Name doesn't match mine, if the name is identical to my name send a collision resolution message

back to sender.
e. Name doesn't match any already established connections.
f. Check that the configuration doesn't forbid connections to this host.

2. If all tests pass create a connection to the peer using the advertised name and store information about
the connection for later.

3. When terminated, linxdisc closes all connections it has created before exiting.

4. If the configuration is changed, closes connection not allowed by the new configuration, and updates
advertisements messages to reflect the new configuration.

When a collision occurs:

A-side

• Send a collision resolution message containing uptime and preferred decision.

B-side

• When receiving a collision resolution message

a. Check uptime and preferred decision if in agreement with sender refrain from sending advertisements
if not in agreement, break tie based on MAC-address

5.2.1.1 Linxdisc Advertisement Message

Table 5.9 Linxdisc Advertisement Message

313029282726252423222120191817161514131211109876543210

3210

VersionLast 2 bytes Ethernet header

ReservedType

Uptime sec

25Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

Uptime usec

Linklen

Netlen

Strings

Version Linxdisc version type (1).

Type Linxdisc message type, for advertisement (2) is used.

Reserved Reserved for future use.

Uptime sec The seconds part of the uptime.

Uptime usec This microsecond part of the uptime.

Linklen Length of linxname, c.f. below.

Netlen Length of netname, c.f. below.

Strings Carries two null-terminated strings, Linkname and Netname (network cluster name).
Link name is a unique identifier for the sending host ment to be used as the name of
the link created by the receiving linxdisc. Network cluster name is a unique cluster id
string identifying a group of hosts that will form a LINX cluster.

5.2.1.2 Linxdisc Collision Resolution Message

Table 5.10 Linxdisc Collision Resolution Message

313029282726252423222120191817161514131211109876543210

3210

VersionLast 2 bytes Ethernet header

ReservedType

Uptime sec

Uptime usec

Preferred decision

Version Linxdisc version type (1).

Type Linxdisc message type, for collision resolution (3) is used.

Reserved Reserved for future use.

Uptime sec The seconds part of the uptime.

Uptime usec This microsecond part of the uptime.

Preferred decision Preferred decision on whether the receiver should exit from the network.

26Document Version 21© Enea Software AB 2011

5. Enea LINX Ethernet Connection ManagerLINX Protocols

6. Enea LINX Point-To-Point (PTP) Connection Manager
This chapter describes version 1 of the Enea LINX Point-To-Point Connection Manager Protocol.

The PTP Connection Manager is designed to meet the following requirements:

• Generic design - The design should allow several shared memory concepts. It should be easy to port the
solution to other hardware. The generic parts should be separated for reuse with interfaces supporting
as many different underlying layers as possible.

• Performance - The throughput should be as high as possible and the latency as low as possible. This
includes minimizing the number of data copying and use of locks.

• Robust - The data exchange should be performed as simple as possible. Minimizing the complexity of
the solution will minimize the possibility of making errors.

This CM is intended to communicate over reliable media, but in case of one side failure, the peer side is
able to detect and react, as described in Section 6.1.2, PTP Connection Supervision Protocol [30].

6.1 Protocol Description

Enea LINX PDUs are stacked in front of, possible, user data to form an Enea LINX packet. All PDUs
contain a "next header" field which indicates the type of the next PDU to be sent. Everything from the
transmit() down call, including possible control plane signaling, from the RLNH layer is sent reliably as
user data. The first field in all headers is the current type, followed by "next" field.

If a malformed packet is received the PTP Connection Manager resets the connection and informs RLNH.

When the PTP Connection Manager encounters problems which prevents delivery of a message or part of
a message it must reset the connection. If the peer replies with RESET, or if the peer has crashed and the
Connection Supervision timer fires, the PTP CM will notify the RLNH.

6.1.1 Enea LINX Point-To-Point Connection Manager Headers

The Enea LINX Point-To-Point Connection Manager protocol defines these headers.

Table 6.1 PTP Connection Manager Protocol Headers

DefinitionValueProtocol number

Main header sent first.0x01PTP_CM_MAIN

Reset header. Used to notify the remote side that the
connection will be torn down and reinitialized.

0x02PTP_CM_CONN_RESET

Connect header. Used to establish connections.0x03PTP_CM_CONN_CONNECT

Notify remote side that connection was established.0x04PTP_CM_CONN_CONNECT_ACK

All messages generated outside the Connection
Manager are send as UDATA.

0x05PTP_CM_UDATA

Fragment header. Messages larger than MTU are
fragmented into several packages. The first fragmen-

0x06PTP_CM_FRAG

ted package has a PTP_CM_UDATA header fol-
lowed by PTP_CM_FRAG header, the following
packages has only PDU PTP_CM_FRAG.

Header for heart beat control messages. These mes-
sages are used to discover a connection failure.

0x07PTP_CM_HEARTBEAT

27Document Version 21© Enea Software AB 2011

6. Enea LINX Point-To-Point (PTP) Connection
Manager

LINX Protocols

Acknowledgement header for heartbeat messages.
Sent as a reply to PTP_CM_HEARTBEAT mes-
sages.

0x08PTP_CM_HEARTBEAT_ACK

Indicates that the current header is the last in the
PDU.

0xFFPTP_CM_NONE

6.1.1.1 PTP_CM_MAIN Header

All messages originating outside the Connection Manger begin with MAIN header. This header specify
the type of the next header to come.

Table 6.2 PTP_CM Main header

313029282726252423222120191817161514131211109876543210

3210

 Next Header Type

Next Header Type Specify what type of PDU will be next.

6.1.1.2 PTP_CM_UDATA Header

All messages originating outside the Connection Manger are sent as USER_DATA. There are two types
of USER_DATA header. The first type is used for messages not requiring fragmentation and for the first
fragment of fragmented messages. The second type - PTP_CM_FRAG is used for all remaining fragments.

Table 6.3 PTP_CM User Data Header

313029282726252423222120191817161514131211109876543210

3210

Total SizeNext Header Type

Upper layer data 1Total Size

Upper layer data 2Upper layer data 1

 Upper layer data 2

Next Header Type Specify what header type will follow in the current PDU.

Total Size Size of user data to be sent. If the size exceeds MTU, there message will be
fragmented.

Upper layer data 1 Source address. CM does not modify this field.

Upper layer data 2 Destination address. CM does not modify this field.

6.1.1.3 PTP_CM_FRAG Head

At destination, fragments will be expected to arrive in order, but may be interrupted by other packets, and
the message will be re-composed based on total size information.

Table 6.4 PTP_CM Fragment Header

313029282726252423222120191817161514131211109876543210

3210

28Document Version 21© Enea Software AB 2011

6. Enea LINX Point-To-Point (PTP) Connection
Manager

LINX Protocols

SizeNext Header Type

 IDSize

Next Header Type Specify what header type will follow in the current PDU.

Size The size of the fragment.

ID Fragment ID.

6.1.1.4 PTP Connection Manager Control Header

Table 6.5 PTP_CM Control Header

313029282726252423222120191817161514131211109876543210

3210

 CM VersionNext Header Type

Next Header Type Type for next packet in PDU. Currently it is PTP_CM_NONE only.

CM Version Connection Manager version

6.1.1.5 PTP Connection Protocol Description

Unless a Connection Manager has been configured to create a connection to a peer, no messages are sent
and the Connection Manager does not respond to connection attempts. Below is described one case when
a connection is created and B side initiates the connection later then A side.

Figure 6.1 Connect Sequence diagram for PTP Connection Manager

DISCONNECTED
A

B

CONN_CONNECT

CONNECTING

DISCONNECTED

CONN_CONNECT_ACK

CONNECTED

CONNECTING CONNECTED

CONN_RESET

CONNECTING.......

CONN_CONNECT

CONNECTING

.......

A-side

• When a Connection Object is created, A moves from DISCONNECTED state to CONNECTING,
then sends a PTP_CM_CONN_CONNECT to B.

a. If B replies with a PTP_CM_CONN_RESET PDU, A remains in CONNECTING state.
b. If B sends a PTP_CM_CONN_CONNECT PDU, A moves to CONNECTED state, sends

PTP_CM_CONN_CONNECT_ACK PDU to B and notifies RLNH that a connection have been
established.

c. If PTP_CM_CONN_RESET or PTP_CM_CONN_CONNECT PDUs are received, while in
CONNECTED state, A side returns to disconnected state.

B-side

1. In DISCONNECTED state, B does not evolve from this state unless a local attempt to create a con-
nection is made.

29Document Version 21© Enea Software AB 2011

6. Enea LINX Point-To-Point (PTP) Connection
Manager

LINX Protocols

2. When a Connection Object is created, B moves from DISCONNECTED state to CONNECTING and
sends a PTP_CM_CONN_CONNECT to A.

a. When PTP_CM_CONN_CONNECT arrives, A is waiting already in CONNECTING state so it
enters CONNECTED state and responds to B with PTP_CM_CONN_CONNECT_ACK.

b. When receiving PTP_CM_CONN_CONNECT_ACK, B side enters in CONNECTED state too.
c. If PTP_CM_CONN_RESET or PTP_CM_CONN_CONNECT PDUs are received while in

CONNECTED state, B side returns to disconnected state

If either sides receive PTP_CM_CONN_CONNECT message while in CONNECTED state, it moves to
DISCONNECTED and sends a PTP_CM_CONN_RESET message.

Figure 6.2 State diagram for PTP Connection Manager

CONNECTING CONNECTED

DISCONNECTED
create_conn()

CONN_CONNECT
CONN_CONNECT_ACK

CONN_RESET
CONN_RESET

CONN_CONNECT

CONN_CONNECT_ACK

6.1.2 PTP Connection Supervision Protocol

The purpose of Supervision function is to detect crashed on peer side. In order to do that,
PTP_CM_HEARTBEAT PDU is sent periodically to the other side. When a PTP_CM_HEARTBEAT_ACK
is received, an internal counter is re-set. If no acknowledgement is received within a certain time interval,
the heartbeat counter is decremented. After a number of ACK missed, the connection is considered crashed
and will be disconnected. The timeout and the number of acknowledgments are configurable.

The supervision activity is independent of user data flow over the connection. Each side is responsible to
detect peer's activity, and each side will request acknowledgment to own heartbeat messages.

30Document Version 21© Enea Software AB 2011

6. Enea LINX Point-To-Point (PTP) Connection
Manager

LINX Protocols

7. Enea LINX TCP Connection Manager
This chapter describes version 3 of the Enea LINX TCP Connection Manager Protocol.

The TCP Connection Manager uses a TCP socket (SOCK_STREAM) as a connection between two LINX
endpoints. As the TCP protocol is reliable, the CM itself has no mechanism for reliability of its own. This
CM is suitable to use across the internet.

7.1 TCP CM Protocol Descriptions

With the Enea LINX TCP Connection Manager Protocol, a connection is established in the following
manner.

• The TCP CM listens on port 19790 by default. Node A wants to connect to node B. A creates a TCP
socket and connects it to B, sends a TCP_CONN message and then waits for a randomly amount of time
for an acknowledgement. If an acknowledgment is not received, A will restart the connection procedure.

• B accepts the socket and when B wants to connect to A, it will lookup the previously accepted socket
and read the TCP_CONN header. Then, it will send an acknowledgement TCP_CONN header to A.

• B considers the connection established if the send was successful and then notifies the upper layer of
the established connection.

• A receives the TCP_CONN header and notifies the upper layer of the connection.

If both nodes try to connect to each other at the same time, neither of the nodes will receive an acknowledg-
ment since the headers are sent on different sockets. This will lead to retries of the connection procedure.
The timeouts for the retries are random.

7.1.1 TCP Connection Manager Headers

The Enea LINX TCP Connection Manager protocol defines the following header and package types.

Table 7.1 TCP Connection Manager Protocol Header Types

DefinitionValueProtocol number

Connect type. Used for connection acknowledgement0x43TCP_CONN

User data type0x55TCP_UDATA

Keep-alive header type0x50TCP_PING

Keep-alive response header type0x51TCP_PONG

7.1.1.1 TCP CM Generic Header

All messages in the TCP CM protocol have the following header. Only if Type indicates TCP_UDATA
the fields source and destination are used - otherwise they must be set to zero. The size field is always used
in the TCP_UDATA header and it may also be used in the TCP_CONN header.

Table 7.2 TCPCM Generic Header

313029282726252423222120191817161514131211109876543210

3210

TypeVersionOReserved

31Document Version 21© Enea Software AB 2011

7. Enea LINX TCP Connection ManagerLINX Protocols

Source

Destination

Size

Reserved Reserved for future use, must be 0.

O OOB bit, the TCP_UDATA is out of band.

Version Version of the TCP CM protocol.

Type Type of the current packet

Source Source link id. Used in type TCP_UDATA, otherwise 0.

Destination Destination link id. Used in type TCP_UDATA, otherwise 0.

Size Size of user data in bytes, followed by the header. Used in type TCP_UDATA and
TCP_CONN, otherwise 0.

7.1.1.2 TCP CM TCP_UDATA Header

All messages that don't originate from the Connection Manager are sent as TCP_UDATA. The user data
is preceded by the TCP CM header with type TCP_UDATA.

7.1.2 TCP CM Connection Supervision Protocol

The two endpoints of a connection send TCP_PING headers to one another every configurable amount of
milliseconds (default is 1000). When an endpoint receives a TCP_PING header, it will respond by sending
a TCP_PONG header to the peer. If the connection goes down in any way, this will be detected and the
CM will report this to the upper layer.

32Document Version 21© Enea Software AB 2011

7. Enea LINX TCP Connection ManagerLINX Protocols

8. Enea LINX Gateway Protocol
This chapter describes the Enea LINX Gateway protocol.

The Gateway consists of a client part and a server part. The communication channel from the client to the
server is a TCP connection. The client sends a request to the server that interprets the request and returns
a reply back to the client. The client must not issue another request until it has got the reply for the previous
one, there is one exception to this rule that will be described later.

8.1 Gateway Protocol Description

The requests and replies must be coded in big-endian format. All requests and replies start with a 8 byte
header followed by a variable part. The content of the variable part depends on the request/reply. These
request/reply pairs are described in detail below.

Table 8.1 Gateway request/reply codes (i.e. payload type)

DefinitionValueRequest/Reply

Retrieve the server's capabilites.1InterfaceRequest

Return the server capabilities.2InterfaceReply

Not used.3LoginRequest

Not used.4ChallengeResponse

Not used.5ChallengeReply

Not used.6LoginReply

Request the server to create a client instance, i.e. start a gateway ses-
sion.

7CreateRequest

Client instance has been created.8CreateReply

Request the server to destroy a "client" instance, i.e. terminate a gate-
way session.

9DestroyRequest

Client instance has been destroyed.10DestroyReply

Request the server to execute a send or send_w_s call.11SendRequest

Return the send/send_w_s result to the client.12SendReply

Request the server to execute a receive or receive_w_tmo call.13ReceiveRequest

Return the receive/receive_w_tmo result to the client.14ReceiveReply

Request the server to execute a hunt call.15HuntRequest

Return the hunt result to the client.16HuntReply

Request the server to execute a attach call.17AttachRequest

Return the attach result to the client.18AttachReply

Request the server to execute a detach call.19DetachRequest

Return the deatch result to the client.20DetachReply

Retrieve the server's name.21NameRequest

Return server name.22NameReply

33Document Version 21© Enea Software AB 2011

8. Enea LINX Gateway ProtocolLINX Protocols

8.1.1 Generic Request/Reply Header

All requests/replies starts with this header.

Table 8.2 Generic gateway request/reply header description

Descriptionbyte3byte2byte1byte0

Type of request/reply, see table Table 8.1, Gateway request/reply codes
(i.e. payload type) [33].

payload_type

Number of bytes for the type specific part, see the request/reply tables below.payload_len

8.1.2 Interface Request/Reply Payload

This request has two purposes. The client sends this request to retrieve information about the gateway
server, e.g. supported requests, protocol version etc. It is also used as a "ping-message" to check that the
server is alive, see receive request section for more information.

Table 8.3 Interface request payload description

Descriptionbyte3byte2byte1byte0

The client implements this protocol version (100).cli_version

Bit field. Bit0 indicates client's endian (0=big, 1=little). Other bits are re-
served.

cli_flags

Table 8.4 Interface reply payload description

Descriptionbyte3byte2byte1byte0

On success, zero is returned, on error, -1 is returned.status

The server implements this protocol version (100).srv_version

Bit field. Bit0 indicates the server's endian (0=big, 1=little). Other bits are
reserved.

srv_flags

Length of payload_types array (i.e. number of supported requests).types_len

Array of the supported requests. Each entry is 4 bytes.payload_types

8.1.3 Create Request/Reply Payload

This request is used to create a "client" instance on the server that the client communicates with.

Table 8.5 Interface request payload description

Descriptionbyte3byte2byte1byte0

Must be 0user

"A client identifier". 0-terminated string.my_name

Table 8.6 Interface reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

A handle that should be used in the destroy request.pid

Maximum signal size that the server can handle.max_sigsize

34Document Version 21© Enea Software AB 2011

8. Enea LINX Gateway ProtocolLINX Protocols

8.1.4 Destroy Request/Reply Payload

This request is used to remove a "client" instance on the server, i.e. end the session that was started with
the create request.

Table 8.7 Destroy request payload description

Descriptionbyte3byte2byte1byte0

Destroy this client (see create request).pid

Table 8.8 Destroy reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

8.1.5 Send Request/Reply Payload

This request is used to ask the gateway server to execute a send or send_w_s call.

Table 8.9 Send request payload description

Descriptionbyte3byte2byte1byte0

Send signal with this pid as sender (send_w_s) or 0 (send).from_pid

Send signal to this pid.dest_pid

Signal size (including signal number).sig_len

Signal number.sig_no

Signal data (except signal number).sig_data

Table 8.10 Send reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

8.1.6 Receive Request/Reply Payload

This request is used to ask the server to execute a receive or a receive_w_tmo call. It differs from
other requests, because the client may send a second receive request or an interface request before it has
received the reply from the previous receive request. The client may send a second receive request to
cancel the first one. Beware that server may already have sent a receive reply before the "cancel request"
was received, in this case the client must also wait for the "cancel reply". The client may send an interface
request to the server, which returns an interface reply. This is used by the client to detect if the server has
die while waiting for a receive reply.

Table 8.11 Receive request payload description

Descriptionbyte3byte2byte1byte0

Receive timeout in milli-seconds (receive_w_tmo) or -1 for infinity
(receive).

timeout

Number of elements in sigsel_list array. 0 means cancel previous
receive request.

sigsel_len

Array of signal numbers to receive.sigsel_list

35Document Version 21© Enea Software AB 2011

8. Enea LINX Gateway ProtocolLINX Protocols

Table 8.12 Receive reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

Received signal's sender (return value from sender).sender_pid

Received signal's original addressee (return value from addressee).addressee_pid

Received signal's size (including signal number). 0 means "cancel receive
request"-reply.

sig_len

Received signal number.sig_no

Received signal's data (except signal number).sig_data

8.1.7 Hunt Request/Reply Payload

This request is used to ask the gateway server to execute a hunt call.

Table 8.13 Hunt request payload description

Descriptionbyte3byte2byte1byte0

Must be 0.user

Hunt name, offset (in bytes) into data.name_index

Hunt signal data (except signal number), offset (in bytes) into data.sig_index

Hunt signal size (including signal number), 0 if no hunt signal is supplied.sig_len

Hunt signal number.sig_no

Signal and process name storage.data

Table 8.14 Hunt reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

The pid returned by the hunt call or 0 if no process was found.pid

8.1.8 Attach Request/Reply Payload

This request is used to ask the gateway server to execute an attach call.

Table 8.15 Attach request payload description

Descriptionbyte3byte2byte1byte0

Attach to this pid.pid

Attach signal size (including signal number), 0 if no attach signal is supplied.sig_len

Attach signal number.sig_no

Attach signal data (except signal number).sig_data

Table 8.16 Attach reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

Return value from the attach call.attref

36Document Version 21© Enea Software AB 2011

8. Enea LINX Gateway ProtocolLINX Protocols

8.1.9 Detach Request/Reply Payload

This request is used to ask the gateway server to execute a detach call.

Table 8.17 Detach request payload description

Descriptionbyte3byte2byte1byte0

Cancel this attach. Value returned in a previous attach reply.attref

Table 8.18 Detach reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

8.1.10 Name Request/Reply Payload

This request is used to retrieve the gateway server's name.

Table 8.19 Name request payload description

Descriptionbyte3byte2byte1byte0

Reservedreserved

Table 8.20 Name reply payload description

Descriptionbyte3byte2byte1byte0

On success, 0 is returned, on error, -1 is returned.status

Length of server name, including '\0'.name_len

Server name. 0-terminate string.name

37Document Version 21© Enea Software AB 2011

8. Enea LINX Gateway ProtocolLINX Protocols

9. Enea LINX Shared Memory Connection Manager
This chapter describes version 1 of the Enea LINX shared-memory connection manager protocol.

9.1 Protocol Description

All SHMCM packets starts with a main header, followed by either a connection header or a user data
header. Connection packets are used to setup, supervise and tear-down a connection. User data packets are
used to transfer data from protocol layers above the connection manager. All protocol headers must be
sent in network byte order.

9.1.1 Shared Memory Protocol Headers

9.1.1.1 SHMCM Main Header

All packets sent from the shared memory connection manger (SHMCM) starts with MAIN header.

Table 9.1 SHMCM main header

313029282726252423222120191817161514131211109876543210

3210

Type

Size

Type Packet type. Protocol version 1 only supports two types of packets, CON_PKT (1) and
UDATA_1_PKT (2).

Size Packet size. Number of bytes that the packet consist of, including the main header.

9.1.1.2 CON_PKT Header

Connection packets or CON_PKTs are used to setup, supervise and tear down a connection.

Table 9.2 SHMCM CON_PKT header

313029282726252423222120191817161514131211109876543210

3210

Type

SpareCno

Type Connection packet type. Protocol version 1 defines four different packets, CON_REQ (1),
CON_ACK (2), CON_RST (3) and CON_ALV (4).

Cno Connection generation number. See Connection Generation Number [40].

Spare Not used, should be set to zero.

38Document Version 21© Enea Software AB 2011

9. Enea LINX Shared Memory Connection Man-
ager

LINX Protocols

9.1.1.3 UDATA_1_PKT Header

User data packets or UDATA_1_PKTs are used to send data from the upper layers over the connection.
The "user data" is located immediately after the UDATA_1_PKT header.

Table 9.3 SHMCM UDATA_1_PKT header

313029282726252423222120191817161514131211109876543210

3210

MsgidCno

Src

Dst

Size

Address MSB

Address LSB

Cno Connection generation number. It is used to detect and discard "old" user data.

Msgid Message id. It is used to keep fragmented user data together.

Src Source address. CM does not modify this field.

Dst Destination address. CM does not modify this field.

Size User data size. CM does not modify this field.

Address MSB Not used in protocol version 1.

Address LSB Not used in protocol version 1.

9.1.2 SHM Connection Protocol Description

The SHMCM consider shared memory to be reliable, i.e. packets will not be lost and they are always received
in the same order that they were sent by the peer. The protocol design requires that these two characteristics
are fulfilled.

The protocol uses four types of connection packets, listed below, to establish, supervise and tear down a
connection.

Table 9.4 SHMCM CON_PKT types

DefinitionValueProtocol number

This packet is sent to start connection setup.1CON_REQ

This packet is sent as a reply to a CON_REQ.2CON_ACK

This packet is sent to the peer to abort the connection setup or to
gracefully tear down the connection. It is not allowed to send user data
after that a CON_RST has been sent.

3CON_RST

Once the connection is setup, this packet is sent periodically to indicate
that "I'm alive".

4CON_ALV

39Document Version 21© Enea Software AB 2011

9. Enea LINX Shared Memory Connection Man-
ager

LINX Protocols

Connection Setup

When the SHMCM receives the connect down call from RLNH, it sends a CON_REQ to the peer and
waits for a CON_ACK from the peer. When the SHMCM receives the CON_ACK, it calls the connected
up call to notify RLNH that the connection is up. If the SHMCM receives a CON_REQ instead of a
CON_ACK, it replies with a CON_ACK and calls connected.

Connection Established

If the SHMCM receives a CON_ACK at this point, it should ignore the CON_ACK. However, if the
SHMCM receives a CON_RST or a CON_REQ, it should call the disconncted up call to notify RLNH
that the connection is down. In case that a CON_REQ was received, the SHMCM must send a CON_RST
before calling disconnected.

When the connection has been established, it should send CON_ALV periodically to tell the peer that "I'm
alive". If the SHMCM has not received any packets, CON_ALV or user data, from the peer for a defined
period of time, it should consider the peer dead and disconnect the connection, i.e. send a CON_RST and
call disconnected.

If the SHMCM receives the disconnect down call from RLNH, it should send a CON_RST and call
disconnected up call. Also, if the SHMCM encounters an internal error, it should send a CON_RST
(if possible) and call disconnected.

Connection Generation Number

The SHMCM should have a 16-bit counter that is incremented before a CON_REQ is sent. This number
should be included in all packets. The peer should store the counter value, that is received in a
CON_REQ/CON_ACK, and compare it with the one that is included in the packets. If they differ, the
packet should be discarded.

User data

The SHMCM gets the user data and corresponding meta-data in the transmit down call. The user data
is packed into one or more UDATA_1_PKTs and sent to the peer. If more than one packet is required, an
ID tag (msgid) should be added to the packets so that the peer can identify which fragments that belongs
together and re-assemble them.

The SHMCM should use the size fields in the main header and the user data header to determine if the
user data has been split into several UDATA_1_PKTs.

40Document Version 21© Enea Software AB 2011

9. Enea LINX Shared Memory Connection Man-
ager

LINX Protocols

10. Enea LINX RapidIO Connection Manager
This chapter describes version 2 of the Enea LINX RapidIO Connection Manager Protocol. It is not com-
patible with version 1, which is not documented here since it has never been implemented for LINX for
Linux.

10.1 Protocol Description

RapidIO is considered as a reliable media, so there is no need for a reliability protocol. RapidIO hardware
are however not reliable to the full extent - packets can be received in a different order than they were sent.
This requires sequence numbers on all data packets that are sent with the protocol described herein.

If a malformed packet is received, the RapidIO Connection Manager resets the connection and informs
the RLNH.

When the RapidIO Connection Manager encounters problems which prevents delivery of a message or
part of a message it must reset the connection. The RapidIO CM notifies the RLNH when the peer replies
with RESET or, if the peer has crashed, the Connection Supervision timer fires.

All Enea LINX RapidIO packets starts with the common rio_frame header. The rio_frame header allows
for other protocols to coexist with this protocol.

Table 10.1 RIOCM rio_frame header

3210

sizeprotocol

The protocol number is 0x22cf (8911) for version 2 of the Enea LINX RapidIO Connection Manager
Protocol. It was 0x8911 for version 1.

The rio_frame header is followed by either a CONN, HEARTBEAT or UDATA header. There are three
types of CONN headers, one HEARTBEAT header and five types of UDATA headers. Some fields are
common for all nine headers. The common fields are type and dst_port:

Table 10.2 RIOCM common fields

3210

reservedtype

reserveddst_port

The type is used to identify the type of the packet. The dst_port is used to identify the destination port of
the packet. In multi-core processors that share the same RapidIO device, the dst_port can be used by the
hardware to identify the destination core of the packet.

10.1.1 LINX RapidIO Connection Establishment Algorithm

The following headers types are used in the Connection Establishment Algorithm:

Table 10.3 RapidIO Connection Manager Connect Headers

DefinitionValueHeader type

Connect request. Used to request connection establishment and its
settings

0x81RIO_CONN_REQ

41Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

Connect acknowledgement. Used to acknowledge the connection re-
quest and its settings.

0x82RIO_CONN_ACK

Reset. Used to cancel the connection.0x83RIO_CONN_RESET

The connection algorithm is quite straightforward.

Let X and Y be two nodes in the same rapidio network. Let a connection be created on X towards Y. X
will start to periodically send RIO_CONN_REQ to Y. When a connection is created on Y towards X, it
will do the same.

When Y (or X) receives a RIO_CONN_REQ, it will respond with a RIO_CONN_ACK. When X receives
a correct RIO_CONN_ACK, it will consider the connection as established and respond with its
RIO_CONN_ACK. When Y receives this RIO_CONN_ACK, it will consider the connection as established,
it may also send a RIO_CONN_ACK to X again, which will be dropped by X.

The last transmission of a RIO_CONN_ACK will seem unnecessary, but it is a consequence of the state
machine used in the implementation. The important thing to notice here is that a correct RIO_CONN_ACK
is dropped by a peer that considers the connection to be established.

A correct RIO_CONN_ACK is a RIO_CONN_ACK with the correct negotiated settings for the connection.
The RIO_CONN_REQ has fields with requests for the mtu and the heartbeat timeout for the connection.
These values are set by a logic expression for each field. The result of this calculation is sent in the
RIO_CONN_ACK. The lowest configured mtu is used, while the largest configured heartbeat timeout is
used. If this calculation mismatches, the RIO_CONN_ACK is regarded as incorrect, and then treated as a
RIO_CONN_REQ instead!

10.1.1.1 RIO_CONN_REQ Header

Table 10.4 RIO_CONN_REQ Header

3210

mtugenerationtype

hb_tmorsvddst_port

src_portsender

type RIO_CONN_REQ

generation A generation value for this connection. Used to distinguish between new and old connec-
tions.

mtu The MTU that the sender of the RIO_CONN_REQ wants to use for this connection.

dst_port The user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device. When
multiple connections share a device ID they must have different ports.

reserved This field is not used in this header.

hb_tmo The heartbeat timeout that the sender of the RIO_CONN_REQ wants to use for this
connection. The value is written in hundreds of msec. A value of 5 yields a tmo of 500ms.

sender The device id of the sender.

src_port The port of the sender.

42Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

10.1.1.2 RIO_CONN_ACK Header

Table 10.5 RIO_CONN_ACK Header

3210

mtu_ackgenerationtype

hb_tmo_ackgeneration_ackdst_port

src_portsender

my_cid

type RIO_CONN_ADD

generation A generation value for this connection. Used to distinguish between new and old
connections. The connection generation value of the sender.

mtu_ack The MTU calculated by the sending peer.

dst_port The user defined destination port of the connection. This field is used by some
RapidIO hardware to distinguish between destination cores that shares the same
device. When multiple connections share a device ID they must have different
ports.

generation_ack This field is used to acknowledge the generation field sent from the peer in the
RIO_CONN_REQ.

hb_tmo_ack The heartbeat timeout calculated by the sending peer. The value is written in hun-
dreds of msec. A value of 5 yields a tmo of 500ms.

sender The device id of the sender.

src_port The port of the sender.

my_cid The cid (connection id) that is to be used in udata and heartbeat headers for this
connection. It is uniqe for each connection and allows the receiver to quickly
identify the connection.

10.1.1.3 RIO_CONN_RESET Header

Table 10.6 RIO_CONN_RESET Header

3210

mtugenerationtype

rsvddst_port

src_portsender

type RIO_CONN_RESET

generation A generation value for this connection. Used to distinguish between new and old connec-
tions.

mtu This may contain the MTU of the connection. Disregarded field.

43Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

dst_port The user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device. When
multiple connections share a device ID they must have different ports.

rsvd This field is not used in this header.

sender The device id of the sender.

src_port The port of the sender.

10.1.2 Enea LINX RapidIO User Data Protocol

Data is sent reliable on RapidIO. But some drivers may not guarantee that the order of the incoming
packets is the same as the order they were sent in. Therefore, the user data packets need sequence numbers.
The receiver implements a reordering queue to ensure that all messages are delivered in order.

Table 10.7 RapidIO Connection Manager User Data Headers

DefinitionValueHeader type

Used when the entire messages plus header can fit within the MTU0x1RIO_SINGLE

The first fragment when sending with simple fragmentation0x2RIO_FRAG_START

Remaining fragments for both types of fragmentation0x3RIO_FRAG

The first fragment when receiving with improved fragmentation0x4RIO_PATCH_START

Contains patches for the ‘holes’ created by the improved fragmentation0x5RIO_PATCH

Messages can be smaller or larger than the max amount of payload that can be sent in a single packet.
When the messages are smaller, the RIO_SINGLE header is used. If otherwise, there are two ways of
sending fragmented messages.

The simple fragmentation is implemented using two headers, RIO_FRAG_START and RIO_FRAG. A
RIO_FRAG_START header is trailed by the needed amount of RIO_FRAG headers to complete the
message.

The other way of sending/receiving fragmented messages is an optimization done in the OSEck Operating
System. The Linux implementation of the RapidIO Connection Manager only has support of receiving
such messages. This way is implemented using three headers, RIO_PATCH_START, RIO_FRAG and
RIO_PATCH. The RIO_PATCH_START is trailed by the necessary amount of RIO_FRAG headers and
then finally trailed by the necessary amount of RIO_PATCH headers. The scenario for using these headers
is as follows:

The cm needs to send a message larger than mtu over the connection. To avoid a lot of memcpys, the cm
merely overwrites some data of the message with RIO_PATCH_START and RIO_FRAG headers after
moving that data to RIO_PATCH packets. It will then transmit every fragment of the message, which then
consists of subsequent data packets. Finally, it transmits all RIO_PATCH packets that the peer needs to
patch (repair) the overwritten data in the message with.

10.1.2.1 RIO_SINGLE Header

Table 10.8 RIO_SINGLE Header

3210

seqnomsgidtype

dst_ciddst_port

44Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

src_portsender

src

dst

payl_size

type RIO_SINGLE

msgid A message identifier for this message.

seqno The sequence number for this packet

dst_port The user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device. When
multiple connections share a device ID they must have different ports.

dst_cid The connection id that was submitted in the RIO_CONN_ACK header.

sender The device id of the sender.

src_port The port of the sender.

src The source link adress of the message

dst The destination link adress of the message.

payl_size The total size of the message.

10.1.2.2 RIO_FRAG_START Header

Table 10.9 RIO_FRAG_START Header

3210

seqnomsgidtype

dst_ciddst_port

src_portsender

src

dst

payl_size

type RIO_FRAG_START

msgid A message identifier for this message.

seqno The sequence number for this packet

dst_port The user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device. When
multiple connections share a device ID they must have different ports.

dst_cid The connection id that was submitted in the RIO_CONN_ACK header.

sender The device id of the sender.

45Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

src_port The port of the sender.

src The source link adress of the message

dst The destination link adress of the message.

payl_size The total size of the message.

10.1.2.3 RIO_FRAG Header

Table 10.10 RIO_FRAG Header

3210

seqnomsgidtype

dst_ciddst_port

src_portsender

type RIO_FRAG

msgid A message identifier for this message.

seqno The sequence number for this packet

dst_port The user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device. When multiple
connections share a device ID they must have different ports.

dst_cid The connection id that was submitted in the RIO_CONN_ACK header.

sender The device id of the sender.

src_port The port of the sender.

10.1.2.4 RIO_PATCH_START Header

Table 10.11 RIO_PATCH_START Header

3210

seqnomsgidtype

dst_ciddst_port

src_portsender

src

dst

payl_size

count_patchcount_frag

type RIO_FRAG_START

msgid A message identifier for this message.

seqno The sequence number for this packet

46Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

dst_port The user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device.

dst_cid The connection id that was submitted in the RIO_CONN_ACK header.

sender The device id of the sender.

src_port The port of the sender.

src The source link adress of the message

dst The destination link adress of the message.

payl_size The total size of the message.

count_frag Number of RIO_FRAG fragments that will trail this header

count_patch Number of RIO_PATCH packets that will trail the fragments

10.1.2.5 RIO_PATCH Header

Table 10.12 RIO_PATCH Header

3210

seqnomsgidtype

dst_ciddst_port

src_portsender

type RIO_PATCH

msgid A message identifier for this message.

seqno The sequence number for this packet

dst_port This is the user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device.

dst_cid The connection id that was submitted in the RIO_CONN_ACK header.

sender This is the device id of the sender.

src_port This is the port of the sender.

10.1.3 Enea LINX RapidIO Connection Supervision Protocol

Supervision of the connection is needed in order to detect if a peer has ‘died’.

Table 10.13 RapidIO Connection Manager Connection Supervision Header

DefinitionValueHeader type

Sent periodically to indicate that the sender is alive0x6RIO_HEARTBEAT

The heartbeat packet is sent every negotiated hb_tmo * 100 ms. When a node has not received a heartbeat
in three periods, the connection is considered timed out and has to be reestablished.

47Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

10.1.3.1 RIO_HEARTBEAT Header

Table 10.14 RIO_HEARTBEAT Header

3210

rsvdpadtype

dst_ciddst_port

src_portsender

type RIO_HEARTBEAT

pad pad

rsvd Not used.

dst_port The user defined destination port of the connection. This field is used by some RapidIO
hardware to distinguish between destination cores that shares the same device.

dst_cid The connection id that was submitted in the RIO_CONN_ACK header.

sender The device id of the sender.

src_port The port of the sender.

48Document Version 21© Enea Software AB 2011

10. Enea LINX RapidIO Connection ManagerLINX Protocols

11. Enea LINX Connection Manager Control Layer
This chapter describes version 1 of the Enea LINX Connection Manager Control Layer Protocol.

11.1 Protocol Description

The purpose of the CMCL is to provide peer supervision, the CMCL does not handle fragmentation and
is not a reliability layer. Fragmentation and loss-less in-order delivery of messages is left to the underlying
driver or connection manager.

Control signaling between the two instances of the CMCL (one instance on each peer of the connection)
is recognized by using the src and dst parameters in the LINX protocol. src is always set to zero, and the
dst parameter is used to identify the control signal.

The CMCL for linux sends a small payload when sending control messages, even though all information
that is needed is submitted in the underlying medias protocol. This payload can be disregarded.

11.1.1 LINX CMCL Connection Establishment Algorithm

The following headers types are used in Connection Establishment and Disconnection:

Table 11.1 CMCL Connection Header Types

DefinitionValueHeader type

Connect request. Used to request connection establishment.0x1CMCL_CONN_REQ

Connect acknowledgement. Used to acknowledge the connection re-
quest.

0x2CMCL_CONN_ACK

Reset. Used to cancel the connection.0x3CMCL_CONN_RST

The CMCL will start in state Disconnected and will remain in that state until the RLNH layer calls downcall
connect and CMCL will enter Connection_1 state where it in turn requests a connection from the underlying
layer by calling downcall connect.

The CMCL will remain in state Connecting_1 until it receives an upcall connected from the underlying
layer and then it will enter the Connecting_2 state where the CMCL tries to establish a connection to its
peer by sending a CONN_REQ message.

The CMCL will remain in state Connection_2 until it receives a CONN_REQ or CONN_ACK from its
peer and will then enter state Connected and call the connected upcall to the RLNH.

In state Connected, the CMCL will supervise the peer by sending keep-alive messages. If no response is
received after three consecutive keep-alive messages the CMCL will enter state Disconnecting, send a
CONN_RST to its peer and call the disconnect downcall to the underlying layer.

When the underlying layer calls upcall disconnected the CMCL will enter Disconnected state and in turn
calls upcall disconnected to the RLNH.

In state Connected, if the RLNH calls downcall disconnect, the CMCL will enter state Disconnecting, send
a CONN_RST message to its peer and call downcall disconnect to the underlying layer.

11.1.2 Enea LINX CMCL User Data

The transmit downcall from the RLNH layer is passed straight down to the underlying layer, no header is
added.

49Document Version 21© Enea Software AB 2011

11. Enea LINX Connection Manager Control
Layer

LINX Protocols

The deliver upcall from the underlying layer is passed to the RLNH layer in the same context. While con-
necting the deliver upcall can sometimes be made while the CMCL is still in Connecting_2 state, in this
case the message is queued and delivered after the CMCL enters the Connected state and the next deliver
upcall is made or keep-alive message is received.

11.1.3 Enea LINX CMCL Connection Supervision Protocol

Supervision of the connection is needed in order to detect if a peer has been reset.

Table 11.2 CMCL Connection Supervision Header Type

DefinitionValueHeader type

Sent periodically to indicate that the sender is alive0x4CMCL_CONN_ALV

The connection alive packet is sent three times per the connection timeout period. The default timeout
period is 300ms.

50Document Version 21© Enea Software AB 2011

11. Enea LINX Connection Manager Control
Layer

LINX Protocols

Index
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

C
connection manager, 7

Ethernet, 15
point-to-point, 27
RapidIO, 41
TCP, 31

connection manager control layer
cmcl, 49

connection manager protocol, 14

E
eupervision, 14

F
feature negotiation, 9, 19

G
gateway, 33

H
heterogeneous systems, 7
hunt, 10

I
identifier, 9
IPC, 7

L
link address, 9
LINX cluster, 26
linxdisc, 24

O
out of band, 21, 32

P
point-to-point, 27
PTP, 27

R
reliability, 21
reliable, 14
reliable media, 27
RLNH, 7, 9

S
SOCK_STREAM, 31
supervision, 10, 23, 30, 32

51Document Version 21© Enea Software AB 2011

LINX Protocols

	LINX Protocols
	Table of Contents
	1. Introduction to the LINX Protocol
	1.1 Abstract
	1.2 Document Revision History
	1.3 Definitions and Acronyms

	2. Overview of the LINX Protocol
	3. LINX Protocols
	3.1 LINX Link Creation and Initialization
	3.2 RLNH Feature Negotiation
	3.3 Publication of Names
	3.4 Remote Name Lookup
	3.5 Link Supervision
	3.6 Protocol Messages
	3.6.1 RLNH_INIT
	3.6.2 RLNH_INIT_REPLY
	3.6.3 RLNH_PUBLISH
	3.6.4 RLNH_QUERY_NAME
	3.6.5 RLNH_UNPUBLISH
	3.6.6 RLNH_UNPUBLISH_ACK
	3.6.7 RLNH_PUBLISH_PEER

	4. Enea LINX Connection Manager Protocols
	4.1 Connection Establishment
	4.2 Reliable Message Passing
	4.3 Connection Supervision

	5. Enea LINX Ethernet Connection Manager
	5.1 Protocol Descriptions
	5.1.1 Enea LINX Ethernet Connection Manager Headers
	5.1.1.1 ETHCM_COREID Header
	5.1.1.2 ETHCM_MAIN Header

	5.1.2 Enea LINX Connect Protocol
	5.1.2.1 Connect Protocol
	5.1.2.2 Connect Protocol Description
	5.1.2.3 Feature Negotiation
	5.1.2.4 ETHCM_CONN Header

	5.1.3 Enea LINX User Data Protocol
	5.1.3.1 User data and Fragmentation Protocol
	5.1.3.2 ETHCM_UDATA Header
	5.1.3.3 ETHCM_FRAG Header

	5.1.4 Enea LINX Reliability Protocol
	5.1.4.1 Reliability Protocol Description
	5.1.4.2 ETHCM_ACK header
	5.1.4.3 ETHCM_NACK header

	5.1.5 Enea LINX Connection Supervision Protocol
	5.1.5.1 Connection Supervision protocol description

	5.2 LINX Discovery Daemon
	5.2.1 Linxdisc protocol
	5.2.1.1 Linxdisc Advertisement Message
	5.2.1.2 Linxdisc Collision Resolution Message

	6. Enea LINX Point-To-Point (PTP) Connection Manager
	6.1 Protocol Description
	6.1.1 Enea LINX Point-To-Point Connection Manager Headers
	6.1.1.1 PTP_CM_MAIN Header
	6.1.1.2 PTP_CM_UDATA Header
	6.1.1.3 PTP_CM_FRAG Head
	6.1.1.4 PTP Connection Manager Control Header
	6.1.1.5 PTP Connection Protocol Description

	6.1.2 PTP Connection Supervision Protocol

	7. Enea LINX TCP Connection Manager
	7.1 TCP CM Protocol Descriptions
	7.1.1 TCP Connection Manager Headers
	7.1.1.1 TCP CM Generic Header
	7.1.1.2 TCP CM TCP_UDATA Header

	7.1.2 TCP CM Connection Supervision Protocol

	8. Enea LINX Gateway Protocol
	8.1 Gateway Protocol Description
	8.1.1 Generic Request/Reply Header
	8.1.2 Interface Request/Reply Payload
	8.1.3 Create Request/Reply Payload
	8.1.4 Destroy Request/Reply Payload
	8.1.5 Send Request/Reply Payload
	8.1.6 Receive Request/Reply Payload
	8.1.7 Hunt Request/Reply Payload
	8.1.8 Attach Request/Reply Payload
	8.1.9 Detach Request/Reply Payload
	8.1.10 Name Request/Reply Payload

	9. Enea LINX Shared Memory Connection Manager
	9.1 Protocol Description
	9.1.1 Shared Memory Protocol Headers
	9.1.1.1 SHMCM Main Header
	9.1.1.2 CON_PKT Header
	9.1.1.3 UDATA_1_PKT Header

	9.1.2 SHM Connection Protocol Description

	10. Enea LINX RapidIO Connection Manager
	10.1 Protocol Description
	10.1.1 LINX RapidIO Connection Establishment Algorithm
	10.1.1.1 RIO_CONN_REQ Header
	10.1.1.2 RIO_CONN_ACK Header
	10.1.1.3 RIO_CONN_RESET Header

	10.1.2 Enea LINX RapidIO User Data Protocol
	10.1.2.1 RIO_SINGLE Header
	10.1.2.2 RIO_FRAG_START Header
	10.1.2.3 RIO_FRAG Header
	10.1.2.4 RIO_PATCH_START Header
	10.1.2.5 RIO_PATCH Header

	10.1.3 Enea LINX RapidIO Connection Supervision Protocol
	10.1.3.1 RIO_HEARTBEAT Header

	11. Enea LINX Connection Manager Control Layer
	11.1 Protocol Description
	11.1.1 LINX CMCL Connection Establishment Algorithm
	11.1.2 Enea LINX CMCL User Data
	11.1.3 Enea LINX CMCL Connection Supervision Protocol

	Index

