
Linx for Linux User's Guide - Document v1.2.0.1

LINX for Linux User's Guide

1. Overview of LINX Communication
2. Description and Main Features of LINX
3. LINX Protocol
4. Install LINX in Linux
5. Build LINX from the Source
6. Quick Start Using LINX Remote Links
7. Create and Supervise LINX Links to Other Nodes
8. Examples - Using LINX with Applications
9. Reference Manuals - LINX for Linux

10. LINX Configuration
11. LINX Statistics per End Point
12. LINX Statistics for EthCM
13. Other Links and Documents
14. Document History

Copyright © 2006-2007 Enea Software AB.

LINX, OSE, OSEck, OSE Epsilon, Optima, NASP, Element, Polyhedra are trademarks of Enea Software AB. Linux is a registered trademark of Linus
Torvalds. All other copyrights, trade names and trademarks used herein are the property of their respective owners and are used for identification
purposes only. The source code included in LINX for Linux are either copyrighted according to GPL (see COPYING file) or according to a BSD type
copyright - see copyright text in each source file.

Disclaimer. The information in this document is subject to change without notice and should not be construed as a commitment by Enea Software AB.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (1 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

1. Overview of LINX Communication

Enea LINX is an open technology for location transparent inter-process and intra-node message passing communication for
distributed systems, e.g. clusters and multi-core real-time environments. It is platform and interconnect independent with
high performance, scaling well to large systems. It is based on a well known transparent message passing method, used for
many years by Enea Software AB in the OSE family of real time operating systems.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (2 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

2. Description and Main Features of LINX

The LINX for Linux is an open source implementation of the LINX inter-process communication protocol for distributed
heterogeneous systems. LINX for Linux currently contains support for the Ethernet inter-node transport media and other
media will be added.

LINX for Linux includes the loadable LINX kernel module, the user-space LINX API library and command tools for
configuring and supervising inter-node communication using LINX.

LINX supports location-transparent and platform-transparent inter-process communication. Applications use the same API,
independent of where the communicating peer is located. Peer processes can be in the same node, handled by the same CPU
or another CPU in a multi-core system, or processes can be in other nodes, whether part of a cluster or independent,
reachable via a suitable transport mechanism. The protocol is specified to allow different operating systems to
communication transparently.

Scalability and real-time performance means that the protocol is designed to be robust and predictable, but still lightweight
to avoid overhead and be highly scalable upwards or downwards, while keeping high performance and a small footprint.
LINX is used on DSP's with little memory available as well as on large servers in large networks with many nodes. This
scaling is easy, as LINX dynamically builds address maps to peers, node links and processes at run-time and only maintains
connections and links which are actually used in the node. Clusters can be configured to limit LINX communication to a
group of systems.

The LINX protocol is also supported by Enea's OSE / OSEck family of real-time operating systems for small and large
systems.

LINX Communication

In LINX for Linux, an application ordinarily uses the LINX API. The application is linked with a the liblinx.a LINX library
and uses functions calls to communicate. This hides the underlying communication protocols. Each application process or
thread creates a LINX endpoint, owning a LINX socket and connected to the LINX kernel module. All communication are
through this LINX endpoint. This socket is of a special type (PF_LINX). LINX messages and notifications are
asynchronous and can arrive at any time.

A lower level LINX Socket API is also available to be used if needed, e.g. when an application wants to simultaneously
wait for multiple events with select(2), without looping and polling.

The LINX protocol, used by the LINX kernel module, has two main levels, RLNH and CM. RLNH is generic and handles
logical LINX connections and supervision within and between nodes. CM provides a reliable transport. If the underlying
transport is non-reliable, e.g. Ethernet, CM needs to provide reliability.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (3 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

Dynamic Discovery of Peers

Dynamic discovery allows applications to find peers by name and be asynchronously notified when the peers appear; this is
called hunting for a peer. The notification arrives with a local identifier, often called spid, to be used by the application as a
handle to the peer, independent of name or location or any ID used in a remote node. Peers can be on the same node or on
remote nodes. To hunt for remote peers, the name shall include the name of a LINX link to reach the remote node.

Sequence, assuming client "e1" in A wants to talk to server "e3" in B:
1. Hunt for "LinkToB/e3"
2. Response with spid, e.g. IDe3
3. Attach to IDe3 (to be notified if dead)
4. Messages to/from IDE3
5. If peer lost, get notification, maybe hunt again
The only difference, if communicating with "e2"
instead, is to hunt "e2" instead of "LinkToB/e3".

 1. Receive message from IDe1
 2. Send response to IDe1
 3. Send any messages to IDe1
Neither side needs any knowledge about
the other, except the identity (spid),
included in each message.

Communication is transparently routed across a series of nodes, if a series of link names are given before the endpoint name,
e.g. "ToC/ToB/server".

Supervision of Peers

Supervision allows applications to get notified if a peer is lost, whether it dies or a communication link to it is closed/lost.
This is called attaching to the peer. An application can again hunt for the peer, getting a new notification as soon as it is
available again, to continue the communication.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (4 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

Inter-node Links - Dynamic Discovery and Supervision

Inter-node links are dynamically discovered and supervised by the LINX discovery daemon, linxdisc. Advertisements are
broadcast to allow dynamic discovery of other nodes and automatic creation of inter-node links. The configuration can
provide limitations to restrict which nodes are allowed, e.g. to form clusters of LINX nodes or to allow/deny specific nodes.
Suitable link names are also configured. When a link to another node is created with a link name, and any application has a
pending hunt for a peer via this remote link name, LINX gets information from the other node and notifies the application
when this peer appears. LINX also supervises the remote peer via the link, as well as supervising the link itself, to notify
those applications which have requested it, if a remote peer, or the link to it, is lost.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (5 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

LINX API and Programming Paradigm

The LINX-API provides a powerful but easy-to-use programming paradigm, to transparently communicate with any peer at
any location. The following illustration shows the main statements used to communicate. First both applications create
LINX endpoints, owned by the applications, giving them names ("sname1" and "server" in the example below). The
application in node A hunts for the server, using the name "linktoB/server". It knows the name and it know that the server
shall be on the remote side of this LINX link. When LINX have discovered node B and they have created a link between
each other and the process in node B has created it's LINX endpoint (named "server"), a notification is sent to the
application in node A with an identity (serverSpid) which the local LINX in A have created. After this step, only this
identity is used, transparently and independently of the location. The application may now optionally attach itself to the
server process, to be notified if it is lost, and send messages to the server. Messages are always sent in signal buffers,
allocated at a LINX endpoint, and the ownership of the buffers are transparently transferred to the receiving endpoint. The
server needs no knowledge at all about the client, it just receives a message, with an identity (clientSpid) locally created by
LINX in node B, and can send a response to this clientSpid.

 Linux process in node A Linux process in node B
LINX lh1 = linx_open("sname1",)
linx_hunt(lh1, "linktoB/server",)
linx_receive(lh1, &sig, &sigselecthunt)
serverSpid = linx_sender(lh1, &SIG)
linx_free_buf(lh1,&SIG);
linx_attach(lh1, LINX_NIL, serverSpid);
sig2=linx_alloc(lh1,...); // and fill with data
linx_send(lh1, &sig2, serverSpid)
linx_receive(lh1, &SIG, &sigselect)

LINX lh2 = linx_open("server",)
linx_receive_w_tmo(lh2, &SIG,),
clientSpid = linx_sender(lh2, &SIG)
// clientSpid is local, not spid1
// Reuse SIG for response
... Store response in SIG and...
linx_send(lh2, &SIG, clientSpid)

A phantom with a local spid represents each remote LINX endpoint, which has been resolved via a hunt
call. Phantoms are created on both sides, when a hunt is resolved. Lower level connection links between
nodes must previously have been created. Applications only uses local identifiers (spid) to send/receive,
thus addressing local endpoints or phantom endpoints.

Signal Buffers

Applications communicate via LINX using signal buffers, containing a signal number, followed by any type of data
structure. These are allocated via and owned by LINX endpoints. When a signal buffer is sent, it's ownership is transferred
to the receiving endpoint. As endpoints are resources owned by the application, these are automatically freed, if the
application dies. Each signal buffer includes a signal number, a 32-bit value, which is used to indicate the type of buffer, i.e.
the actual data structure after the signal, in the signal buffer. In the LINX API, any signal buffer structure is cast to the
generic struct pointer LINX_SIGNAL *. Transferred signal buffers are queued at the receiving endpoint and can be
selectively received by the application. By specifying a list of signal numbers in the linx_receive(3) call, the application will
only receive buffers with the selected signal numbers, leaving others in the queue, for later retrieval.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (6 of 18)2007-06-29 13:43:03

file:///C|/vobs/linux/linx/doc/html/linx_receive.3.html

Linx for Linux User's Guide - Document v1.2.0.1

3. LINX Protocol

The LINX protocol is used for transparent communication with remote and local applications. Applications communicate
through their LINX endpoints and hunt for other applications by their endpoint name. The LINX discovery daemon can
automatically create remote inter-node connections (LINX links) and supervise these, to allow transparent communication
across distributed systems. Applications get notifications when other remote or local applications (with LINX endpoints)
become available or are disconnected or die.

In addition to the LINX protocol, there is a LINX API, with function calls hiding the protocol details from the application.

The LINX protocol is described in a separate document (see Other Links and Documents), but here is a very short summary.

The protocol upper layer, the RLNH (rapid link handler) layer, will allow applications to look up LINX endpoints by name,
and will actively supervise local and remote endpoints and send notifications when these are disconnected or closed. RLNH
relies on the lower LINX level, the CM connection manager, to provide reliable in-order transmission of arbitrary sized
messages over any media between nodes. The RLNH is also responsible for creating and supervising remote LINX links to
other nodes. This means that it supervises only those endpoints, local and on the remote nodes, that are known to this RLNH
and the established links.

The CM connection manager is the lower layer and needs to be aware of and support the underlying transport mechanism. If
the underlying media is reliable, e.g. RapidIO or shared memory, the CM can be rather simple, but with unreliable media
like Ethernet, the CM needs to provide many features, like flow control, peer supervision, retransmission etc.

The LINX for Linux currently contains an implementation of RLNH and CM for Ethernet.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (7 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

4. Install LINX in Linux

Fetch the LINX distribution as a compressed tar file and unpack the package at a suitable place in your Linux system. When
unpacking, a folder with the name linx-n.n.n/ is created, where n.n.n is the LINX version.

Open the file doc/index.html with a browser and read README, RELEASE_NOTES and Changelog for the latest news
about this version. Follow the directions in this user's guide to get started using LINX and read reference documentation.
Optionally read the MAN page versions of the reference documentation.

Other files and directories:

● Makefile, config.mk, common.mk are make files for building LINX.
● doc/ contains documentation - start reading index.html.
● include/ contains include files for LINX API and LINX Socket API.
● net/ contains the LINX kernel module.
● example/ contains LINX example applications.
● liblinx/ contains the LINX API.
● linxcfg/, linxdisc/, linxstat/ contain tools for configuring and status.
● scripts/ contains a few build scripts.
● bin/ and example/bin are created when LINX is built via make all
● example/bin/ is also created if examples are built via make example.

After building LINX, the main files to use are:

● linx.ko is the LINX kernel module.
● linx_eth_cm.ko is the LINX ethernet Connection Manager
● liblinx.a is the LINX API library.
● Commands: linxdisc, linxcfg, linxstat.
● Examples can be used to learn LINX.

To build your applications, include the linx.h header and link with the liblinx.a library.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (8 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

5. Build LINX from the Source

When building the entire LINX package, the following will be built:

● The LINX kernel module - linx.ko
● The LINX ethernet Connection Manager module - linx_eth_cm.ko
● The LINX API library liblinx.a
● Command binaries in a bin/ directory, which is created

The examples are not built by default with make. When built using make example at the top level, the example programs
are created in the example/bin/ directory, which is created.

Note that headers in the target Linux kernel source tree must be available, to be able to compile LINX. This is needed also
when compiling for the running Linux kernel.

Optionally, reconfigure the LINX Kernel Module

Before building, it is possible to reconfigure compile time constants for the LINX kernel module. Things like the maximum
number of remote links to handle per node, maximum number of sockets per established remote link and similar constants
can be changed from their default values. Information about these kernel module constants are found in the README file;
limits for configuration values are in the RELEASE_NOTES.

Build LINX to Run on Current Host

It is easy to build LINX self hosted, e.g. for the running kernel. Just go to the top of the LINX directory and do make:
 cd /Your_LINX_Install_Path
 make
which will build the LINX files.

Optionally build also the LINX examples with:
 make example

Building LINX for a Selected Target, Cross-compiling

Cross compiling LINX for another target, requires that a few variables are set accordingly, either as environment variables
or by changing the file config.mk. At least the following are needed:

● ARCH - Target architecture, e.g. ppc, i586, ...
● CROSS_COMPILE - Cross compiler tool prefix, e.g. powerpc-linux-
● KERNEL - Kernel source tree

In addition, your PATH environment variable must be set to reach your cross compiler tool kit. With correct PATH,
perform the cross compiling build:
 cd /Your_LINX_Install_Path
 make

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (9 of 18)2007-06-29 13:43:03

file:///C|/vobs/linux/linx/doc/README
file:///C|/vobs/linux/linx/doc/RELEASE_NOTES

Linx for Linux User's Guide - Document v1.2.0.1

6. Quick Start Using LINX Remote Links

After installing LINX from the tar file and building all with make, according to the previous section, follow this short
description to create a simple LINX link between two nodes, here called NodeA and NodeB, after which your applications
can start using LINX to communicate. See next section for more about creating remote links, e.g. automatically. See also the
Examples section for test applications with source code.

Replace the Ethernet MAC addresses below with the actual values in your two Linux nodes.

On NodeA, do the following to create a LINX link to NodeB:

1. Unpack LINX and build all with make, according to previous description.
2. Load the LINX kernel modules into your kernel. You need root permissions.

 $ sudo insmod net/linx/linx.ko
 $ sudo insmod net/linx/linx_eth_cm.ko

3. Create a connection to the remote node (to NodeB) with:
 $ bin/linxcfg create 0b:0b:0b:0b:0b:0b eth0 LinkToB
The connection will stay in state "CONNECTING" until also the remote side has acknowledged and completed the
connection.

4. Build your applications - include linx.h and link with liblinx.a.

On NodeB, do the same, but to NodeA, to complete the bidirectional connection:

1. Unpack LINX and build all with make, according to previous description previous description.
2. Load the LINX kernel modules into your kernel. You need root permissions.

 $ sudo insmod net/linx/linx.ko
 $ sudo insmod net/linx/linx_eth_cm.ko

3. Create a connection to the remote node (to NodeA) with:
 $ bin/linxcfg create 0a:0a:0a:0a:0a:0a eth0 LinkToA

4. Build your applications - include linx.h and link with liblinx.a.

Now your applications can communicate with each other, using the LINX API. The sequence of functions calls used in the
applications are shown in the description section. Simplified, an application in node B creates a LINX endpoint, which it
calls "server" with linx_open(3). Another application in node A create a LINX endpoint (it's name is irrelevant here). The A
application hunts for "LinkToB/server" with linx_hunt(3). and gets a response from LINX with an identifier for the server,
this response it read with linx_receive(3) and contains an identifier for the server, serverID. Finally the A application can
send messages to serverID and B will receive these to its endpoint, linx_send(3) and linx_receive(3), transferred through the
LINX link. Application B sees only a local identifier (clientID) for application A and can send responses or any messages to
it. The identifiers are always local in each node.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (10 of 18)2007-06-29 13:43:03

file:///C|/vobs/linux/linx/doc/html/linx_open.3.html
file:///C|/vobs/linux/linx/doc/html/linx_hunt.3.html
file:///C|/vobs/linux/linx/doc/html/linx_receive.3.html
file:///C|/vobs/linux/linx/doc/html/linx_receive.3.html
file:///C|/vobs/linux/linx/doc/html/linx_receive.3.html

Linx for Linux User's Guide - Document v1.2.0.1

7. Create and Supervise LINX Links to Other Nodes

Applications may want to find and communicate with other applications on remote nodes. Each application creates a LINX
endpoint with a name, through which they can hunt for any other LINX endpoints in local or remote nodes and
communicate with them.

To reach remote nodes, LINX links with linknames must be created between the nodes, using the LINX protocol. The name
of a link (linkname) usually is different on the two sides of the link, often the linkname is the name of the remote node
connected via the link. Applications reach LINX endpoints on remote nodes, using hunt paths which include the linkname, e.
g. "linkname/endpointname". Multiple linknames can be given in the hunt path to reach an endpoint, automatically routing
through a series of LINX links.

LINX links to remote nodes are set up and managed, using the LINX protocol. As soon as a link is active, applications can
hunt for remote application, using a hunt name consisting of the link name following by the remote LINX endpoint name, e.
g. "linktoA/app2". After finding the remote endpoint, the communication is completely transparent, using the received
identity number of the remote endpoint.

Automatic Handling of Remote LINX Links - linxdisc Daemon

Remote links can be automatically created and supervised, using the linxdisc(8) daemon in all nodes. This daemon
broadcasts advertisements on the local Ethernet. When receiving advertisements from other nodes, it automatically creates
links to them.

Configuration of the remote link handing is done in the /etc/linxdisc.conf(5) file, or other file name if given as the linxdisc
start option.

Filters in the configuration file will control which remote nodes to which links are allowed. Some changes in the
configuration can be immediately applied, by sending SIGHUP to the linxdisc daemon.

Setting up LINX Links to Remote Nodes - linxcfg Command

The linxcfg(1) command can be used to create or destroy LINX links to remote nodes.

This command must be used on both sides to complete a connection - the status will be "connecting" until also the other side
has created its side of the connection. The linxstat(1) command can be used to check the status.

LINX Status Display - linxstat Command

Status information from the LINX kernel module can be displayed, using the linxstat(1) command. Status is shown for local
and remote LINX endpoints, as well as LINX links to other nodes. The information includes queued signal buffers, pending
attaches and pending hunts.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (11 of 18)2007-06-29 13:43:03

file:///C|/vobs/linux/linx/doc/html/linxdisc.8.html
file:///C|/vobs/linux/linx/doc/html/linxdisc.conf.5.html
file:///C|/vobs/linux/linx/doc/html/linxcfg.1.html
file:///C|/vobs/linux/linx/doc/html/linxstat.1.html
file:///C|/vobs/linux/linx/doc/html/linxstat.1.html

Linx for Linux User's Guide - Document v1.2.0.1

LINX Message Trace

When using an external protocol analyzer such as tcpdump, the only messages that will be visible are the ones that are sent
to other nodes (external messages). The internal messages are just sent via the LINX kernel module and does not reach the
point where the linux kernel can duplicate messages for any listening protocol analyzer (the Linux General Device Driver
Interface).

There is a feature in LINX to make the internal messages visible as well. This is done by duplicating all messages that are
sent within LINX (linx_internal_sendmsg()) to a special dummy network driver called linx0. Since LINX 1.2, there are also
patches for tcpdump and libpcap included in the release. These patches make tcpdump and libpcap understand the messages
that are sent to linx0. Please note that there are only patches for tcpdump-3.9.4 and libpcap-0.9.4.

Here follows a short description of how to start using linx message trace.

1. The LINX kernel module needs to be compiled with the "LINX_MESSAGE_TRACE=yes" option and loaded into
the kernel.

2. The LINX dummy network driver needs to be compiled and present in the kernel and brought up with the command
"ifconfig linx0 up".

3. The tcpdump and libpcap need to be compiled with the patches provided with the LINX release.
4. The protocol analyzer tcpdump needs to be started and configured to listen on linx0.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (12 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

8. Examples - Using LINX with Applications

Running the Simple LINX Example

This example is included in the LINX distribution and consists of a client/server application. One or many client can be run
on one or many different nodes, while one program is started as a server on one node. The server can be terminated and
restarted, the clients will receive notifications about the server and can resume operation whenever it sees that the server is
available. The actual operation is simple, the client sends a message and the server answers.

Run the Simple Example on one Node - no links between nodes are needed here:

● Compile LINX on the node, as earlier described and install the LINX kernel module
 make
 sudo insmod net/linx/linx.ko
 sudo insmod net/linx/linx_eth_cm.ko

● Start the server in the background and start the client in the foreground. Ask the client to send 10 requests:
 example/bin/linx_example_server &
 example/bin/linx_example_client -n 10

Run the Simple Example on Two Nodes:

● Compile LINX on each node, or cross compile for the nodes, as earlier described. If not compiled locally, transfer
the LINX kernel module, the linxcfg command and the LINX example to the two nodes. Modify the paths below if
needed.
 make

● On each node, install the LINX kernel module
 sudo insmod net/linx/linx.ko
 sudo insmod net/linx/linx_eth_cm.ko

● On each node, start linxcfg, giving the device name and the MAC-address of the other node and any suitable
linkname. Below as example we use the MAC-addresses 0a:0a:0a:0a:0a:0a and 0b:0b:0b:0b:0b:0b and the device
eth0 in both nodes. We select the linkname srvnode for the link to the server node. Any linkname can be used for
the link from the server to the client node, as it is not used in this example.
On server node:
 sudo bin/linxcfg create 0a:0a:0a:0a:0a:0a eth0 srvnode
On client node:
 sudo bin/linxcfg create 0b:0b:0b:0b:0b:0b eth0 anynode

● On server node, start the server
 example/bin/linx_example_server

● On client node, start the client. Tell the client the linkname for the link to the server node.
 example/bin/linx_example_client -n 10 srvnode

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (13 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

9. Reference Manuals - LINX for Linux

The reference manual pages for LINX are under the LINX doc/ directory, in the man1 - man8 subdirectories. The linx(7)
manual page is the top document. The linx.h(3) and linx_types.h(3) are included in you applications. To read these with the
man command in Linux, you need to add the path to the doc/ directory to your MANPATH environment variable. Example,
reading the linx(7) manual page:

MANPATH=/Your_LINX_Install_Path/doc man linx

Alternatively instead use index.html in the LINX doc directory to read the HTML version of the reference manual pages,
which were created from the man page format files. The MAN pages are the originals and any changes must be done there.
You might want to check first, that the HTML files have been recreated after the latest changes of the manual pages.

LINX API

The LINX API is described in the manual pages (index.html).

LINX Socket API

The LINX Socket API is described in the linx(7) manual page.

LINX Commands for Configuration, LINX Links Handling and LINX Status

The linxcfg command, the linxdisc daemon and the linxdisc.conf file, as well as the linxstat command are described in their
manual pages.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (14 of 18)2007-06-29 13:43:03

file:///C|/vobs/linux/linx/doc/html/linx.7.html
file:///C|/vobs/linux/linx/doc/html/linx.h.3.html
file:///C|/vobs/linux/linx/doc/html/linx_types.h.3.html
file:///C|/vobs/linux/linx/doc/index.html
file:///C|/vobs/linux/linx/doc/index.html
file:///C|/vobs/linux/linx/doc/html/linx.7.html#sect7
file:///C|/vobs/linux/linx/doc/html/linxcfg.1.html
file:///C|/vobs/linux/linx/doc/html/linxdisc.8.html
file:///C|/vobs/linux/linx/doc/html/linxdisc.conf.5.html
file:///C|/vobs/linux/linx/doc/html/linxstat.1.html

Linx for Linux User's Guide - Document v1.2.0.1

10. LINX Kernel Module Configuration

Parameters can be passed to the LINX kernel module (linx.ko) at load time. For example:

 insmod linx.ko LINX_MAX_LINKS=64

To list available parameters and types, the modinfo command can be used:

 modinfo -p linx.ko

The following parameters can be passed to the LINX kernel module:

linx_max_links

Specify the maximum number of links handled by LINX per node. When the maximum number of links is reached, new
links will be refused to be created. The default value is 32 and max is 1024.

linx_max_sockets_per_link

Specify the maximum number of sockets/spids per established link. If the maximum number of sockets/spids is reached for
a specific link, the link will be disconnected and reconnected. The default value is 1024 and max is 65536.

linx_max_spids

Specify the maximum number of sockets/spids per node. When the maximum number of sockets/spids is reached, new
sockets/spids can not be opened. If the maximum number of sockets/spids is reached for a specific link, the link will be
disconnected and reconnected. The linx_max_links value needs to be a power of 2. The default value is 512 and max is
65536.

linx_max_attrefs

Specify the maximum number of pending attaches per node. When the maximum is reached, attach calls will fail. If the
maximum number of sockets/spids is reached for a specific link, the link will be disconnected and reconnected. The
linx_max_attrefs value needs to be a power of 2. The default value is 1024 and max is 65536.

linx_sockbuf_size

Specifies the send and receive buffer queue size of a Socket. This value is passed to the socket struct fields socket-
>sk_sndbuf and socket->sk_rcvbuf. These fields control the total number of memory a socket may use for sending and
receiving packages. The default value is 1073741824 and max is 1073741824

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (15 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

11. Statistics per Endpoint

Statistics are available for each LINX end-point and can be turned on at compile-time for the LINX kernel module. The per
end-point statistics are independent of which Connection Manager is used. The statistics for all LINX end-points are
gathered in the procfs filesystem in '/proc/net/linx/sockets'. Statistics are collected for both local and remote
LINX endpoints as well as the link endpoints.

To turn on statistics, pass -DSOCK_STAT when building the LINX kernel module.

Statistics are presented in one file (/proc/net/linx/sockets) and are ordered per LINX endpoint. The statistics are
also available through the ioctl interface and also by using the linx_get_stat() call. The following statistics are presented:

no_recv_bytes Number of received bytes

no_sent_bytes Number of sent bytes

no_recv_signals Number of received signals

no_sent_signals Number of sent signals

no_recv_remote_bytes Number of received bytes from remote LINX end-points.

no_sent_remote_bytes Number of bytes sent to remote LINX end-points.

no_recv_remote_signals Number of received signals from remote LINX end-points.

no_sent_remote_signals Number of sent signals to remote LINX end-points.

no_recv_local_bytes Number of received bytes from local LINX end-points.

no_sent_local_bytes Number of bytes sent to local LINX end-points.

no_recv_local_signals Number of received signals from local LINX end-points.

no_sent_local_signals Number of sent signals to local LINX end-points.

no_queued_bytes Number of bytes waiting in the receive queue of the LINX end-point.

no_queued_signals Number of signals waiting in the receive queue of the LINX end-point.

A signal buffer is not considered received, until the user-application has done a linx_receive() or recvmsg()/recvfrom(). A
sent signal will be shown as a queued signal on the receiving LINX end-point until the receiving LINX end-point does a
linx_receive() or recvmsg()/recvfrom(). When a remote hunt is resolved, the hunt reply will be counted as a received remote
signal even though the hunt reply signal itself is not sent over the link. From the LINX end-points perspective it receives the
hunt reply from the remote LINX socket, therefore it is counted as a received remote signal. The same applies to attach
signals, when an attach on a remote LINX end-point is received it is counted as a received remote signal. When a LINX end-
point is destroyed, so are the statistics for that end-point. If the user-application needs to save the statistics, the application
should save the statistics before doing a linx_close() or close().

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (16 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

12. Statistics for EthCM

Statistics can be turned on at compile-time for the LINX Ethernet Connection Manager.

The statistics are collected in the procfs filesystem and shows the number of sent and received pakets per link, and the
number of retransmitted packets per link.

To turn on statistics, pass the following compile-time options when building LINX.

-DSTAT_SEND_PKTS
Shows the number of sent pakets per link, is presented as /proc/net/linx/linkname/send_pkts.

-DSTAT_RECV_PKTS
Shows the number of received pakets per link, is presented as /proc/net/linx/linkname/recv_pkts.

-DSTAT_SEND_PKTS
Shows the number of sent pakets per link, is presented as /proc/net/linx/linkname/send_pkts.

-DSTAT_RECV_PKTS
Shows the number of received pakets per link, is presented as /proc/net/linx/linkname/recv_pkts.

-DSTAT_SEND_RETRANS
Shows the number of received pakets per link, is presented as /proc/net/linx/linkname/send_retrans.

-DSTAT_BASIC
Turns on all of the above statistics fields.

-DSTAT_ALL
Turns on all of the above statistics fields plus additional unsupported fields.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (17 of 18)2007-06-29 13:43:03

Linx for Linux User's Guide - Document v1.2.0.1

13. Other Links and Documents

LINX Support and Information

Email: linx@enea.com

LINX SourceForge Web Home and Project

● http://linx.sourceforge.net LINX Home page.
● http://sourceforge.net/projects/linx for downloading latest software version or more information.

Other Documentation

See www.enea.com for general information about LINX. You will find a LINX Datasheet, the LINX protocols described,
Questions & Answers about LINX and other information.

14. Document History

Current version is also seen in document header when printed (HTML title line).

Revision Author Date Status and Description of purpose for new revision

1.2.0.1 debu,,lejo 2007-06-29 Add per-end-point statistics

1.2.0.0 debu,wivo,
lejo

2007-04-17 Add statistics, message trace

1.1.0.1 lejo 2007-04-09 Minor doc format adjust

1.1.0 lejo 2006-10-30 For LINX for Linux 1.1.

1.0.3 lejo 2006-09-14 For LINX for Linux 1.0.

To print this document from an HTML browser, it is recommended to use Firefox or IE6, which will print this with
reasonable page breaks.

file:///C|/vobs/linux/linx/doc/usersguide/UsersGuide_LINX_for_Linux.html (18 of 18)2007-06-29 13:43:03

mailto:linx@enea.com
http://linx.sourceforge.net/
http://sourceforge.net/projects/linx
http://www.enea.com/

	Local Disk
	Linx for Linux User's Guide - Document v1.2.0.1

