LINX for Linux User's Guide

LINX for Linux User's Guide

e 1. LINX Overview
¢ 1.1 Introduction
¢ 1.2 LINX Concepts
e 2 Installation
¢ 3. Building LINX
e 4 Using LINX

¢ 4.1 LINX Endpoints
¢ 4.2 LINX Signals
¢ 4.3 Hunting for an Endpoint
¢ 4.4 Attaching to an Endpoint
¢ 4.5 Inter-node Communication
¢ 4.6 Virtual Endpoints
® 5. Getting Started
¢ 5.1 Loading the LINX Kernel Modules
¢ 5.2 Creating Links
¢ 5.3 Running the LINX Example Application
e 6. LINX Utilities
¢ 6.1 linxcfg
¢ 6.2 linxdisc
¢ 6.3 linxstat
¢ 6.4 LINX Message Trace
e 7. LINX Kernel Module Configuration
e 8. LINX Statistics
¢ 8.1 Per-endpoint Statistics
+ 8.2 Ethernet CM Statistics
® 9. Where to Find More Information
¢ 9.1 Reference Documentation
¢ 9.2 LINX Protocols

¢ 9.3 The LINX Project
¢ 9.4 Other Information

Copyright © 2006-2007 Enea Software AB.

LINX, OSE, OSEck, OSE Epsilon, Optima, NASP, Element, Polyhedra are trademarks of Enea Software AB.
Linux is a registered trademark of Linus Torvalds. All other copyrights, trade names and trademarks used
herein are the property of their respective owners and are used for identification purposes only. The source
code included in LINX for Linux is released partly under the GPL (see COPYING file) and partly under a

BSD type license - see license text in each source file.

Disclaimer. The information in this document is subject to change without notice and should not be construed

as a commitment by Enea Software AB.

Document version: 2.0.0

LINX for Linux User's Guide



LINX for Linux User's Guide

1. LINX Overview

1.1 Introduction

LINX is an open inter-process communications (IPC) protocol, designed to be platform and interconnect
independent. It enables applications to communicate transparently regardless of whether they are running on
the same CPU or are located on different nodes in a cluster. Any type of cluster configuration is supported,
from a single multi-core board to large systems with many nodes interconnected by any network topology.
LINX is based on the traditional message passing technology used in the Enea OSE / OSEck family of
real-time operating systems.

LINX consists of a set of Linux kernel modules, a LINX library to be linked with applications and a few
command tools for configuration of inter-node links and statistics reports.

There is one main LINX kernel module that implements the IPC mechanisms and the Rapid Link Handler
(RLNH) protocol, which allows LINX functionality to span multiple nodes transparently over logical links.
To use LINX for inter-node communication, a Connection Manager (CM) kernel module that supports the
underlying interconnect must be loaded as well. Currently, LINX contains two CMs, one for raw Ethernet and
one for TCP/IP. The CM is located below the main LINX kernel module in the protocol stack and its main
task is to provide reliable, in-order delivery of messages. LINX can be adapted to any underlying transport by
adding new CMs.

The RLNH protocol and the CM protocols are specified in a separate document (see section 9.2) .

The LINX kernel module provides a standard socket based interface using its own protocol family,
PF_LINX.

The LINX library provides a set of function calls to applications. Application programmers should normally
use the LINX API provided by this library, but it is possible to use the underlying socket interface too if
necessary. Information on how to use the socket interface directly is found in the LINX reference
documentation.

1.2 LINX Concepts

Endpoint An endpoint is an entity which can participate in LINX communication. Each
endpoint is assigned a name by the application creating it.

SPID A binary identifier assigned to each endpoint by LINX. The SPID is used to refer to
an endpoint when communicating with it.

LINX Signal Endpoints communicate by exchanging messages called LINX signals. When
sending a LINX signal, the application specifies the SPID of the destination
endpoint.

Connection A LINX connection provides reliable, in-order delivery of LINX data between two

nodes over an underlying media or protocol stack.

Connection Manager A LINX component that implements support for setting up connections over a
particular type of interconnect.

Link A logical association between two LINX nodes. Each link uses an underlying
connection as transport. LINX IPC services are transparent across links.

Hunting A LINX mechanism that allows applications to look up the SPID of an endpoint by
name. A LINX signal is sent back to the application when a matching endpoint is
found or created. Applications can search for endpoints on remote nodes by
specifying a path of links to traverse.

1. LINX Overview 2



LINX for Linux User's Guide

Attaching A LINX mechanism that allows application to supervise endpoints in order to find
out when they are terminated. A LINX signal is sent back to the application when the
supervised endpoint is terminated.

1.2 LINX Concepts 3



LINX for Linux User's Guide

2. Installation

Download the LINX distribution 1inx-n.n.n.tar.gz, where n.n.n is the LINX version. See section 9.3
for information on where to download LINX. Extract the contents of the archive at a suitable place in your
Linux system:

$ tar -zxvf linx-n.n.n.tar.gz

This creates a LINX directory called 1inx-n.n.n/. Thefile 1inx-n.n.n/doc/index.html contains
pointers to all documentation available in the release. Make sure to read the README, RELEASE_NOTES and
Changelog files for information about this version. Reference documentation is available as man pages and
in HTML format. There is also a document describing the LINX protocols.

The following is found under the top level LINX directory:

Makefile, config.mk, Make files for building LINX
common . mk

bmark/ Example benchmark application
example/ Example client/server application
doc/ LINX documentation

drivers/ Dummy network driver for LINX message trace
include/ LINX include files

liblinx/ LINX library source code
linxcfg/, linxdisc/, LINX commands source code
linxstat/

net/linx/ LINX source code

patch/ Patches for libpcap and tcpdump
script/ Build scripts

2. Installation 4



LINX for Linux User's Guide

3. Building LINX

To build LINX self hosted, e.g. for the running kernel, just go to the top level LINX directory and do make:

$ cd /path/to/linx-n.n.n/
$ make

This will build the entire LINX package.

Note that headers in the target Linux kernel source tree must be available to be able to compile LINX. This is
needed also when compiling for the running Linux kernel.

Cross-compiling LINX for another target requires a few variables to be set, either as environment variables or
by changing the config.mk file in the top level LINX directory. The following is needed:

® ARCH — Target architecture, e.g. ppc
® CROSS_COMPILE — Cross compiler tool prefix, e.g. powerpc-linux—
¢ KERNEL — Kernel source tree

In addition, the PATH environment variable must be set to reach the cross compiler tool kit. When this has
been set up correctly, go to the top level LINX directory and do make.

When building the entire LINX package, the following is built:

elnnet/linx/
¢ The LINX kernel module, 1inx.ko
¢ The LINX Ethernet Connection Manager kernel module, 1inx_eth_cm.ko
¢ The LINX TCP Connection Manager kernel module, 1inx_tcp_cm.ko
®In 1ib/ (created)
¢ The LINX library, 1iblinx.a
¢ Inbin/ (created)
¢ The 1inxcfg command for creating links
¢ The 1inxdisc daemon for dynamic LINX topology setup
¢ The 1inxstat command for LINX statistics
eIndrivers/net
¢ The LINX message trace dummy network driver, linxtrace.ko
¢ In example/bin (created)
¢ LINX example application binaries, 1inx_basic_client and 1inx_basic_server
¢ In bmark/bin (created)
¢ A simple benchmark application, 1inx_lbmark

3. Building LINX 5



LINX for Linux User's Guide

4. Using LINX

This section describes the fundamental concepts of LINX communication. The examples show how to use the
LINX API, defined in the file 1inx . h.

See section 3 for information on how to load and configure LINX for your system.

4.1 LINX Endpoints

An application that wants to communicate using LINX first creates a LINX endpoint by calling

linx open().linx_open () assigns a name to the endpoint, the name is a null-terminated string. The
name is not required to be unique. On Linux, the name may be of any length, but note that there may be
restrictions on other platforms. One thread may own multiple LINX endpoints simultaneously.

LINX *client = linx_open("client", 0, NULL);

LINX assigns each endpoint a binary identifier called a SPID. The SPID is used to refer to the endpoint when
communicating with it. SPIDs are unique within the node on which they are created.

Each endpoint is internally associated with a LINX socket. An application can obtain the socket descriptor of
a LINX endpoint using the 1inx get descriptor () callif needed, e.g. for generic poll () or
select () calls together with other descriptors. Note that a LINX socket descriptor retrieved this way must
not be closed by calling close ().

A LINX endpoint is closed by calling 1inx close (). This frees all resources owned by the endpoint. If a
thread exits, all of its owned LINX endpoints will automatically be closed.

4.2 LINX Signals

Applications communicate by exchanging messages called LINX signals between endpoints. A LINX signal
buffer contains a mandatory leading 4 byte signal number, optionally followed by data that the sender wishes
to convey to the destination. Thus, the minimum size of a LINX signal is 4 bytes. Signal numbers are used to
identify different types of signals and are mainly defined by applications. The signal number range
0x10000000 to OxFFFFFFFF is available for user applications.

New LINX signals are easily defined. It is simply a matter of declaring a struct (see the example below). Each
application shall also declare the union LINX_SIGNAL type to contain all LINX signals used in that
particular application. LINX signals shall be cast to pointers to this generic structure in LINX API function
calls.

#define REQUEST_SIG 0x5001 /* Signal number */
#define REPLY_SIG 0x5002

struct request_sig

{
LINX_SIGSELECT sig_noj;
int code;

}

struct reply_sig

{
LINX_SIGSELECT sig_noj;
int status;

4. Using LINX 6



LINX for Linux User's Guide

union LINX_ SIGNAL

{
LINX_SIGSELECT sig_no;
struct request_sig request;
struct reply_sig reply;

i

Before a LINX signal can be sent, it must be allocated and initialized. The 1inx alloc () call returns a
LINX signal buffer and initializes the signal number with a provided value.

union LINX_SIGNAL *sig;

sig = linx_alloc (endpoint, sizeof (struct request_sig), REQUEST_SIG);
sig->request.code = 1;

The returned LINX signal buffer is owned by the LINX endpoint that allocated it and may not be used by
other endpoints. Sending a LINX signal transfers its ownership to the destination endpoint. A LINX signal is
never shared between different threads or endpoints. When a LINX signal buffer is not needed anymore, it
should be freed by calling 1inx free buf ().

Before sending a LINX signal, the SPID of the destination endpoint must be known. LINX provides a method
to obtain the SPID of an endpoint by searching for its name, this is called hunting and is described in the next
section. The receiver of a LINX signal can look up the SPID of the sender using the 1inx sender () call.
When the destination SPID is known, the LINX signal can be sent:

linx_send(endpoint, &sig, server_spid);

Transferred LINX signals are stored in a receive queue associated with the destination endpoint. The
destination endpoint chooses when to receive a LINX signal and what signal numbers to accept at any given
time. This means that an endpoint may choose to receive LINX signals in a different order than they were
sent, based on signal number filtering. A received LINX signal may be reused, for example to send a reply, if
the buffer is large enough. Just overwrite the signal number field with the new value.

union SIGNAL *sig;
LINX_SIGSELECT any_sig[]l= { 0 }; /* Signal filter. Here any signal is allowed */

linx_receive (endpoint, &sig, any_sigqg);

LINX provides automatic endian conversion of the signal number if needed when a LINX signal is sent to an
endpoint located on a remote node. The rest of the signal data is not converted, this must be taken care of in
the applications.

4.3 Hunting for an Endpoint

Before sending a LINX signal, the sender must know the SPID of the destination endpoint. The SPID of a
peer endpoint is obtained by asking LINX to hunt for its name using the 1inx hunt () call. When the peer
endpoint has been found, LINX makes sure that a LINX signal is sent to the hunting endpoint. This LINX
signal appears to have been sent from the found peer endpoint, i.e the SPID can be obtained by looking at the
sender of the LINX signal. The hunting endpoint may provide a LINX signal to be sent back when the sought
endpoint has been found. If no LINX signal is provided, a default LINX signal of type
LINX_OS_HUNT_SIG is sent instead.

union SIGNAL *sig;
LINX_SPID server_spid;
LINX_ SIGSELECT sig_sel_hunt = { 1, LINX_OS_HUNT_SIG };

linx_hunt (endpoint, "server", NULL);
linx_receive (endpoint, &sig, sig_sel_hunt);

4.2 LINX Signals 7



LINX for Linux User's Guide

server_spid = linx_sender (endpoint, &siqg);

If the peer endpoint does not exist when hunted for, LINX stores the hunt internally as pending. The LINX
hunt signal is sent back to the hunting endpoint when an endpoint with matching name is created.

If there are several LINX endpoints with the same name, it is not defined which one is used to resolve a hunt
call.

4.4 Attaching to an Endpoint

If a LINX endpoint sends a LINX signal to another endpoint, but the receiving endpoint has terminated for
some reason, the LINX signal will be thrown away (freed) by LINX.

LINX provides a mechanism to supervise a peer endpoint, i.e. to request notification of when it is terminated.
The linx attach () callis used to attach to an endpoint. When a supervised endpoint terminates, LINX
makes sure that a LINX signal is sent back to the supervising endpoint. This LINX signal appears to have
been sent from the supervised (terminated) endpoint, i.e the SPID can be obtained by looking at the sender of
the LINX signal. The endpoint that attaches may provide a LINX signal to be sent back when the supervised
process terminates. If no LINX signal is provided, a default LINX signal of type LINX_OS_ATTACH_SIGis
sent instead.

linx_attach (endpoint, server_spid, NULL);

If the supervising endpoint wants to resume communication, it should issue a new hunt for the peer endpoint
name, in order to be notified when a new endpoint with the same name is found or created.

4.5 Inter-node Communication

LINX endpoints are able to communicate transparently regardless of whether they are located on the same
node or on different nodes interconnected in some way in a LINX cluster. A cluster may use different
operating systems that support LINX — a LINX endpoint on a Linux node may for example communicate with
a process on a connected DSP running the Enea OSEck real-time operating system.

A LINX cluster should be seen as a logical network established between a set of nodes interconnected by
some underlying transport that is supported by LINX, such as Ethernet. For two nodes to be able to
communicate, a LINX link must first be established between them. Each node may set up any number of links
to other nodes which are directly reachable on the underlying transport. Links can be manually set up by using
the 1inxcfg command, or dynamically established using the LINX discovery daemon, 1inxdisc.

Each link has a name that is unique within the node. The name of a link may be (and usually is) different on
the two sides of the link, i.e. the link between nodes A and B may be called “LinkToB” on A and “LinkToA”

on B. Often the link name is the same as the name of the remote node connected via the link.

Note that nodes do not have addresses in LINX. To reach a remote node, the complete path of link names
to be used is specified.

To hunt for a LINX endpoint located on a remote node, the name of the endpoint is prepended with the path of
link names that shall be used to reach that node, separated by ““/’.

Example:

Hunting for “LinkToB/LinkToC/EndpointName” tells LINX to search for “EndpointName” on the node two
hops away from us that is reachable by traversing first “LinkToB” and then “LinkToC”.

4.3 Hunting for an Endpoint 8



LINX for Linux User's Guide
4.6 Virtual Endpoints

Since LINX SPIDs are unique within a single node only, it is not possible to address remote endpoints by
using their remote SPIDs directly. LINX inter-node communication is based on automatic creation of local
virtual endpoints that represent remote endpoints. Each LINX endpoint involved in inter-node
communication has a virtual endpoint, internally created by LINX, representing it on the peer node. A virtual
endpoint acts as a proxy for a particular remote endpoint and is communicated with in the same way as
normal (user-created) endpoints. This way, applications do not need to know the true SPIDs of endpoints on
other nodes - they always communicate with local virtual endpoints, which have local SPIDs. The life span of
a virtual endpoint matches the life span of the remote endpoint it represents.

A LINX signal sent to a virtual endpoint is intercepted by LINX and automatically forwarded to the remote
node where the endpoint it represents is located. On the destination node, LINX delivers the LINX signal to
its intended destination and makes it appear as if it was sent from a virtual endpoint representing the true
sender.

A LINX signal received from an endpoint on a remote node always appears to have been sent from the
corresponding local virtual endpoint.

Virtual endpoints are created by LINX when needed, typically when a remote hunt call has been made and the
peer endpoint has been found (or created) on the remote node. Virtual endpoints use the same naming syntax
as the hunt path described above. This means that when LINX creates a virtual endpoint, the pending hunt
request for its name are resolved and the hunt LINX signal is sent to the hunting endpoint from the SPID of
the virtual endpoint.

LINX also creates virtual endpoints representing links to remote nodes. These endpoints carry the same name
as the link, prepended with "/". An application can monitor the state of a link by hunting for and attaching to
the virtual endpoint representing it.

When an endpoint terminates, LINX makes sure that all virtual endpoints representing it on remote nodes are
terminated too (so that attach LINX signals are sent to supervising endpoints). If a remote node is shut down
or becomes unreachable, LINX will detect this and terminate all virtual endpoints that represent endpoints
located on that node.

Example:

An application on node A hunts for "LinkToB/server". This tells LINX to search for the endpoint "server" on
node B, reachable by traversing link "LinkToB". When an endpoint named "server" has been found (or
created) on B, LINX creates a virtual endpoint on node A named "LinkToB/server" and sends the hunt LINX
signal from this virtual endpoint to the hunting endpoint. After receiving the hunt LINX signal, the application
is able to communicate with the remote endpoint "server" on node B by sending LINX signals to the virtual
endpoint "LinkToB/server".

Note that the scenario above will also create a virtual endpoint named "LinkToA/client" on node B (if "client"
is the name of the hunting endpoint and "LinkToA" is the name of the link on node B).

4.6 Virtual Endpoints 9



LINX for Linux User's Guide

5. Getting Started

5.1 Loading the LINX Kernel Modules

To enable LINX, simply load the LINX kernel module into the Linux kernel (requires root permissions):
$ insmod net/linx/linx.ko
Applications are now able to use LINX, but only to communicate within the node.
To use LINX for communication between several interconnected nodes, also load the appropriate LINX
Connection Manager kernel module depending on which underlying transport to use. LINX currently supports

raw Ethernet and TCP/IP.
To use raw Ethernet as transport, load the Ethernet CM kernel module:
$ insmod net/linx/linx_eth_cm.ko

To use TCP/IP as transport, load the TCP CM kernel module:

$ insmod net/linx/linx_tcp_cm.ko

5.2 Creating Links
To setup a LINX cluster with two participating nodes, here called A and B, start by installing the appropriate
kernel modules as described above on both nodes. Then use the linxcfg command on each node to create a

link to the other node. The syntax of the command differs depending on which CM is used.

When using Ethernet, the MAC address of the remote node, the device name to use and a suitable link name
shall be provided.

On node A (replace the MAC address with the actual value on node A):
$ bin/linxcfg create 00:18:4D:72:13:1B ethO LinkToB
On node B (replace the MAC address with the actual value on node B):
$ bin/linxcfg create 00:0C:6E:C3:FB:A2 ethO LinkToA
When using TCP/IP, the IP address of the remote node and a suitable link name shall be provided:
On node A (replace the IP address with the actual value on node A):
$ bin/linxcfg -t tcp create 192.168.1.2 LinkToB

On node B (replace the IP address with the actual value on node B):
$ bin/linxcfg -t tcp create 192.168.1.1 LinkToA

After these steps, the LINX cluster is available and applications can communicate with eachother
transparently, regardless of on which node they are located.

5. Getting Started 10



LINX for Linux User's Guide

5.3 Running the LINX Example Application

The LINX example application is found in the example/ directory. It is a simple client / server based
application that serves both as an introduction to the LINX API programming model, and as a quick way of
testing that LINX is up and running in a system with one or more nodes.

See above for information on how to build the LINX kernel modules and binaries (including the example).

Doing make example in the top level LINX directory builds only the example. This produces two
executables in the example/bin directory: 1inx_basic_client and 1inx_basic_server.

The actual operation of the application is simple; the client sends LINX signals to the server and the server
sends reply LINX signals back. There can be any number of clients distributed on different nodes. Each client
will hunt for the server, either on a given link name (path of link names) or on the local machine if no
linkname is provided. The server can be terminated and restarted, the clients use LINX attach to detect when
the server disappears and will resume operation when the server is available again.

To run the example on a single node, the followings steps are needed:

1. Build LINX

2. Load the LINX kernel module into the kernel

3. Start the example server in the background: example/bin/linx_basic_server &
4. Start the example client: example/bin/linx_basic_client

To run the example on two nodes, the following steps are needed:

1. Build LINX

2. Load the LINX kernel module on both nodes

3. Load the appropriate LINX CM kernel module on each node

4. On each node, use the 1 inxcfg command to establish the link

5. On one node, start the example server: example/bin/linx_basic_server

6. On the other node, start the example client: example/bin/linx_basic_client linkname
Where 1inxname is either LinkToA or LinkToB according to the link names given above in 3.2).

5.3 Running the LINX Example Application 11



LINX for Linux User's Guide

6. LINX Utilities

6.1 linxcfg

The 1inxcfg command creates or destroys LINX links to remote nodes. The type of CM is specified using
the —t option. If no CM type is given, the Ethernet CM is assumed.

Examples:
$ bin/linxcfg create 00:18:4D:72:13:1B ethO LinkToB

$ bin/linxcfg destroy LinkToB
The 1inxcfg command must be used on both participating nodes for a link to be established.

Many optional parameters depending on CM type can be given when creating a link with 1inxcfg. See the
linxcfg(1) reference documentation for details.

6.2 linxdisc

On Ethernet, a LINX cluster can be automatically established and supervised by running the 1inxdisc
daemon on all participating nodes. The daemon periodically broadcasts advertisements and waits for
advertisements from remote nodes. Each node advertises a cluster name and a node name. These values are
defined in a configuration file provided to 1inxdisc. Each cluster and each node must have a unique name.
The configuration file also defines filtering rules for which network interfaces to use and which remote node
names to connect to. When an advertisement is received from a node that belongs to the same cluster and is
allowed according to the node name filtering rules, a link is automatically set up between the nodes.

See the linxdisc(8) and linxdisc.conf(5) reference documentation for details.

6.3 linxstat

LINX status information can be fetched from the LINX kernel module and displayed using the 1inxstat
command. Status is shown for local and virtual (remote) endpoints as well as links to other nodes. The
information includes names, SPIDs, queued LINX signals and pending hunts and attaches. See the linxstat(1)
reference documentation for details.

6.4 LINX Message Trace

When using an external protocol analyzer such as t codump, only LINX messages sent between nodes are
visible. Intra-node transmissions never reach the point where the Linux kernel duplicates messages for
listening protocol analyzers (the Linux General Device Driver Interface). LINX provides a feature to make
these messages visible as well. This is done by duplicating all LINX signals that are sent within LINX to a
special dummy network driver called linxO.

There are also patches for t cpdump and 1ibpcap included in the LINX release (since LINX 1.2). These
patches make tcpdump and libpcap understand the messages that are sent to linx0.

To start using LINX message trace, the following steps are required:

1. Compile the LINX kernel module with the LINX_MESSAGE_TRACE=yes option and load it into
the kernel.

6. LINX Utilities 12



LINX for Linux User's Guide

2. Compile the LINX dummy network driver and load it into the kernel. Enable it by doing: i fconfig
1inx0 up

3. Compile tcpdump and libpcap with the patches provided in the LINX release patch/ directory.
4. Start tcpdump and configure it to listen on linx0.

6.4 LINX Message Trace 13



LINX for Linux User's Guide

7. LINX Kernel Module Configuration

Parameters can be passed to the LINX kernel module at load time. Example:

S insmod linx.ko linx_max_links=64

To list available parameters and types, the modinfo command can be used:

$ modinfo -p linx.ko
The following parameters can be passed to the LINX kernel module:
linx_max_links

The maximum number of links that can be established to remote nodes. When the limit is reached, LINX will
refuse to create new links. The default value is 32 and the maximum value is 1024.

linx_max_sockets_per_link

The maximum number of endpoints (sockets) that are allowed to communicate over one link. If the limit is
exceeded, the link will be disconnected and reestablished. The value must be a power of 2. The default value
is 1024 and the maximum value is 65536.

linx_max_spids

The maximum number of LINX endpoints (sockets) that can be created. When the limit is reached, LINX will
refuse to create new endpoints. The value must be a power of 2. The default value is 512 and the maximum
value is 65536.

linx_max_attrefs

The maximum number of pending attaches. When the limit is reached, attach() calls will fail. The value needs
to be a power of 2. The default value is 1024 and the maximum value is 65536.

linx_max_tmorefs

The maximum number of timeout references. When the limit is reached, 1inx regquest tmo () will fail.
The value must be a power of 2. The default value is 1024 and the maximum value is 65536.

linx_sockbuf_size
Speficies the send and receive buffer queue size of a LINX socket. This value is passed to the socket struct

fields socket->sk_sndbuf and socket->sk_rcvbuf, which control the memory a socket may use for sending and
receiving packages. The default value and maximum value is 1073741824.

7. LINX Kernel Module Configuration 14



LINX for Linux User's Guide

8. LINX Statistics

8.1 Per-endpoint Statistics

Statistics per endpoint can be enabled at compile-time for the LINX kernel module by using the
-DSOCK_STAT flag when building.

Statistics are collected for both ordinary and virtual LINX endpoints, as well as for links, independent of
which Connection Manager is used. The results can be found in the procfs file system in the file
/proc/net/linx/sockets and are also available through the 1inx get stat () function call or by
using the 1inxstat -S command.

The following statistics are presented:

no_recv_bytes Number of received bytes
no_sent_bytes Number of sent bytes
no_recv_signals Number of received LINX signals
no_sent_signals Number of sent LINX signals

no_recv_remote_bytes Number of bytes received from remote endpoints.
no_sent_remote_bytes Number of bytes sent to remote endpoints.
no_recv_remote_signals Number of LINX signals received from remote endpoints.
no_sent_remote_signals Number of LINX signals sent to remote endpoints.
no_recv_local_bytes Number of bytes received from local endpoints.
no_sent_local_bytes Number of bytes sent to local endpoints.
no_recv_local_signals Number of LINX signals received from local endpoints.
no_sent_local_signals Number of LINX signals sent to local endpoints.
no_queued_bytes Number of bytes waiting in the receive queue of the endpoint.

no_queued_signals Number of LINX signals waiting in the receive queue of the endpoint.

A sent LINX signal is shown as queued until the destination application has received it with a

linx receive () call(orarecvfrom() / recvmsg () if using the socket interface directly). When a
hunt for a remote endpoint is resolved, the hunt reply will be counted as a “received remote” LINX signal
even though the hunt reply itself is not sent over the link. From the LINX endpoints perspective, the hunt
reply is received from a virtual endpoint which represents a remote endpoint. The same applies to attach
LINX signals from virtual endpoints.

When a LINX endpoint is destroyed, so are the statistics for that endpoint. If an application needs to save the
statistics, it should do so before calling 1inx close () (or close () if using the socket interface directly).

8.2 Ethernet CM Statistics

Statistics can be enabled at compile-time for the LINX Ethernet Connection Manager by using the following
flags when building LINX:

-DSTAT_SEND_PKTS
Shows the number of sent packets per link, stored in /proc/net/linx/cm/eth/send_pkts
-DSTAT_RECV_PKTS
Shows the number of received packets per link, stored in
/proc/net/linx/cm/eth/recv_pkts

8. LINX Statistics 15



LINX for Linux User's Guide

-DSTAT_SEND_PKTS
Shows the number of sent packets per link, stored in /proc/net/linx/cm/eth/send_pkts
-DSTAT_RECV_PKTS
Shows the number of received packets per link, stored in
/proc/net/linx/cm/eth/recv_pkts
-DSTAT_SEND_RETRANS
Shows the number of received packets per link, stored in
/proc/net/linx/cm/eth/send_retrans
-DSTAT_BASIC
Turns on all of the above statistics fields.

8.2 Ethernet CM Statistics

16



LINX for Linux User's Guide

9. Where to Find More Information

9.1 Reference Documentation

The reference manuals can be found under the doc/ directory, in the manl - man8 subdirectories. The
linx(7) manual page is the top document. To be able to read the reference documentation with the man
command in Linux, the path to the LINX doc/ directory needs to be added to the MANPATH environment
variable. Alternatively, index.html in the LINX doc/ directory contains pointers to HTML version of the
reference manual pages, which have been generated from the man page format files.

The LINX API is described in the reference manual pages, see linx.h(3) and linx_types.h(3).

How to use the LINX socket interface directly is described in the linx(7) manual page.

The linxcfg(1) command, the linxdisc(8) daemon and the linxstat(1) command are also described in reference
manual pages. .

9.2 LINX Protocols

Specifications of all LINX protocols for inter-node communication are found in the separate LINX protocols
document.

9.3 The LINX Project

The LINX project can be found on SourceForge on the following addresses:

¢ http://linx.sourceforge.net - LINX Home page.
¢ http://sourceforge.net/projects/linx - latest software version and more information.

Email: linx@enea.com

9.4 Other Information

See www.enea.com for more general information about LINX. You will find a LINX Datasheet, the LINX
protocols described, Questions & Answers about LINX and other information.

9. Where to Find More Information 17


http://linx.sourceforge.net/
http://sourceforge.net/projects/linx
mailto:linx@enea.com
http://www.enea.com/

LINX for Linux User's Guide

9.4 Other Information

18



	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0
	LINX User's Guide - Document v2.0.0

