ENEA LINX(7) manual page
LINX(7) manual page

Name

linx - LINX inter-process communication protocol

Synopsis

#include <linx.h>
#include <linx_socket.h>
#include <linx_ioctl.h>
#include <linx_types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>

Description

LINX is a location transparent inter-process communication protocol. It is based on the message passing
technology used in the Enea OSE family of real time operating systems.

LINX consists of a set of kernel modules and provides a standard socket based interface using its own
protocol family, PF_LINX. There is also a LINX library that provides a more advanced messaging API.
Applications normally access LINX through this library, but sometimes direct access via the socket interface
may be necessary.

Linx Concepts

An application that wants to communicate using LINX must first create a LINX endpoint. One thread may
own multiple LINX endpoints simultaneously. A LINX endpoint is created with a non-unique name (a string).
A handle which is used to refer to the endpoint in subsequent calls is returned to the application.

LINX endpoints communicate by sending and receiving LINX signals. The properties of LINX signals are
described below.

Each LINX endpoint has a binary identifier called a spid which is unique within the node. A sending endpoint
must know the spid of the destination endpoint to be able to communicate. The spid of a peer LINX endpoint
is normally obtained by hunting for its name. When an endpoint with a matching name is found or created,
LINX sends a hunt signal back to the hunting endpoint that appears to have been sent from the found
endpoint. The spid can thus be obtained by looking at the sender of this signal.

A LINX endpoint can supervise, or attach to, the spid of a peer endpoint in order to be notified by a LINX
signal when it is terminated or becomes unreachable.

The communication path between two LINX nodes is called a LINX link. A LINX link is created with a
name string, and the same link may have different names on the opposite nodes, i.e. the link between nodes A
and B may be called "LinkToB" on A, and "LinkToA" on B.

When hunting for an endpoint on a remote node, the name of the endpoint is prepended with the path of link
names needed to reach the node, e.g. "LinkToB/LinkToC/EndpointName". LINX will create a virtual
endpoint that acts as a local representation of the remote endpoint. LINX signals sent to the spid of a virtual
endpoint are automatically routed to the proper destination on the remote node.

LINX(7) manual page 1

ENEA LINX(7) manual page

When a LINX endpoint is closed, its owned LINX signals are freed.

It is not allowed to use a LINX endpoint from two contexts at the same time. When a Linux process has
multiple threads, it is not allowed to access a LINX endpoint from other contexts than the one that opened it.
When fork(2) is called, the child process inherits copies of the parents socket related resources, including
LINX endpoints. In this case, either the parent or the child shall close its LINX endpoints. A LINX endpoint is
not removed until it has been closed by all of its owners.

LINX Application Interfaces

LINX provides both a standard socket interface and a more advanced LINX API which is available through
the LINX library, to be linked with the application. The LINX API is the recommended way for applications
to access LINX, since it simplifies for the programmer by abstracting the direct socket interactions. It
implements a set of functions specified in linx.h(3) .

The LINX socket interface is the underlying socket implementation provided by the LINX kernel module and
is used by the LINX library. It is described in detail below.

It is possible for applications to use a combination of the LINX API and the LINX socket interface. In this
case, the LINX API function linx_get_descriptor(3) can be used to obtain the socket descriptor of a LINX
endpoint. This descriptor can be used together with other file descriptors in generic poll(2) or select(2) calls.
Note that it is NOT allowed to call close(2) on a LINX socket descriptor obtained by a
linx_get_descriptor(3) call.

LINX Signals

A LINX signal consists of a mandatory leading 4-byte signal number, optionally followed by data. Thus, the
size of a LINX signal buffer must be at least 4 bytes. LINX signal numbers are of type LINX_SIGSELECT.
Signal numbers are mainly defined by the applications, but a few values are not allowed. Zero (0) is illegal
and must not be used and 250-255 are reserved by LINX.

LINX provides endian conversion of the signal number if needed when a signal is sent to a remote node. The
signal data is not converted.

LINX Socket Interface

The LINX socket interface allows application programmers to access LINX using standard socket calls. It
should be noted that only a subset of the socket calls are implemented and that additional features have been
made available through ioctl calls. These deviations and features are described below.

struct sockaddr_linx
When using the socket interface directly, a LINX endpoint is represented by a sockaddr_linx
structure:

struct sockaddr_linx

{
sa_family_t family;
LINX_SPID spid;
Vi

Linx Concepts 2

ENEA LINX(7) manual page

family shall be AF_LINX and spid is the spid of the LINX endpoint. The sockaddr_linx structure is
type-casted into a generic sockaddr structure when passed to the socket interface function calls.

The following calls are provided by the LINX socket interface:

socket()
A LINX socket is created by calling the socket(2) function as:

linx_sd = socket(PF_LINX, SOCK_DGRAM, 0);

When a LINX socket is created, its name is unspecified. To assign a name to the socket, use the
LINX_TOCTL_HUNTNAME ioctl request.

On success, the return value is a descriptor referencing the socket. On error, -1 is returned and errno
is set to one of the following values:

EPROTONOTSUPPORTED
The protocol type is not supported. Only PF_LINX is accepted.

ESOCKTNOSUPPORT
The socket type is not supported. Only SOCK_DGRAM is accepted.

ENOMEM

Insufficient memory is available. Alternatively, the maximum number of spids has been reached. This
value is configurable as a parameter to the LINX kernel module, see LINX Users Guide for more
information.

sendto()
The sendto(2) function is called as:

len = sendto(l/inx_sd, payload, size, 0, (struct sockaddr*) &sockaddr_linx, sizeof(struct
sockaddr_linx));

The payload shall be a LINX signal buffer and size shall be its length in bytes. Note that it is
mandatory for a LINX signal to have a leading 4 byte signal number. The spid field of the
sockaddr_linx structure shall be the spid of the destination endpoint.

On success, the number of bytes sent is returned. On error, -1 is returned and errno is set to one of the
following values:

EBADF
An invalid descriptor was specified.

ECONNRESET
The destination endpoint has been killed.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

LINX Socket Interface 3

ENEA LINX(7) manual page

EOPNOTSUPP
The sending LINX socket has not been assigned a name.

EPIPE
This error is reported at an attempt to send to the spid of a LINX endpoint that is being closed as the
call occurs.

sendmsg()
The sendmsg(2) function is called as:

len = sendmsg(linx_sd, *msg, 0);

msg is a msghdr structure as defined in sendmsg(2) . The msg_iov field of the msghdr structure shall
point to an iovec structure containing the LINX signal buffer to transmit and the msg_iovlen field
shall be set to 1. Note that it is mandatory for a LINX signal to have a leading 4 byte signal number.
The msg_name field shall be a pointer to a sockaddr_linx structure containing the spid of the
destination endpoint and the msg_namelen field shall be set to the size of the sockaddr_linx structure.
The ancillary fields and the flags field of the msghdr structure shall not be used and be set to zero.

On success, the number of bytes sent is returned. On error, -1 is returned and errno is set to one of the
following values:

EBADF
An invalid descriptor was specified.

ECONNRESET
The destination endpoint has been killed. Note that this case is accepted and the signal is silently
discarded by LINX.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

EOPNOTSUPP
The sending socket has not been assigned a name.

EPIPE
This error is reported at an attempt to send to the spid of a LINX endpoint that is being closed as the
call occurs.

recvfrom()
The recvfrom(2) function is called as:

len = recvfrom(l/inx_sd, payload, size, 0, (struct sockaddr*) &sockaddr_linx, sizeof(struct
sockaddr_linx));

It is used to receive any LINX signal from any LINX endpoint. It can not be used when signal number
filtering and/or sender filtering is needed, see recvmsg(2) . The first signal in the sockets receive
queue is returned in the supplied payload buffer. If no signal is currently available at the socket, the
call blocks until a signal is received. The sender of the signal is returned in the sockaddr_linx
structure. Note that the size of the payload buffer must be at least 4 bytes, since it is mandatory for a
LINX signal to have a 4 byte leading signal number.

LINX Socket Interface 4

ENEA LINX(7) manual page

On success, the number of bytes received is returned. If the received signal is larger than the supplied
payload buffer, zero is returned and the signal buffer size is written as a 32-bit value in the first 4
bytes of the payload buffer. On error, -1 is returned and errno is set to one of the following values:

EBADF
An invalid descriptor was specified.

EFAULT
Invalid payload buffer pointer provided.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

EOPNOTSUPP
The receiving socket has not been assigned a name.

recvmsg()
The recvmsg(2) function is called as:

len = recvmsg(sd, msg, 0);

msg is a pointer to a msghdr structure as defined in recvmsg(2) . A LINX signal buffer shall be
supplied in an iovec structure pointed to from the msg_iov field and the msg_iovlen field shall be set
to 1. Note that the size of the supplied buffer must be at least 4 bytes, since it is mandatory for a LINX
signal to have a 4 byte leading signal number.

The recvmsg(2) call supports signal number filtering and sender filtering. This allows the user to
specify which signal numbers shall be received and/or from which sender. The signal filter is
described by a linx_receive_filter_param structure:

struct linx_receive_filter_param

{
LINX_SPID from;
LINX_OSBUFSIZE sigselect_size;
const LINX_SIGSELECT *sigselect;

Vi

The from field specifies that only signals from a specific spid should be received and sigselect is an
array of LINX_SIGSELECT numbers to be received. The first position in the array contains the
number of entries in the list that follows. If the first position is set to a negative count, all LINX
signals except those listed will be received. The size of the array is sigselect_size.

The filtering uses ancillary fields in the msghdr structure and is described by the following example
code:

struct msghdr msg;

char cmsg[CMSG_SPACE (sizeof (struct linx_receive_filter_param))];
struct linx_receive_filter_param * rfp;

struct iovec iov;

const LINX_SIGSELECT sig_sel[] = { 1, EXAMPLE_SIG };

LINX Socket Interface 5

ENEA LINX(7) manual page

rfp = ((struct linx_receive_filter_param ¥*)
(CMSG_DATA (((struct cmsghdr *)cmsg))));
rfp->sigselect_size = sizeof(sig_sel);
rfp->from = from_spid;
rfp->sigselect = sig_sel;
msg.msg_name = (void*)&linx_addr;
msg.msg_namelen = sizeof (struct sockaddr_linx);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = cmsg;
msg.msg_controllen =
CMSG_SPACE (sizeof (struct linx_receive_filter_param));
((struct cmsghdr *)cmsg)->cmsg_len = msg.msg_controllen;

((struct cmsghdr *)cmsg)->cmsg_level = 0;
((struct cmsghdr *)cmsg)->cmsg_type = 0;
iov.iov_base = *signal;

iov.iov_len = sigsize;

read_size = recvmsg(linx->socket, &msg, 0);

On success, the number of bytes received is returned. If the received signal is larger than the supplied

payload buffer, zero is returned and the signal buffer size is written as a 32-bit value in the first 4

bytes of the payload buffer. On error, -1 is returned and errno is set to one of the following values:

EBADF
An invalid descriptor was specified.

EFAULT
An invalid msghdr structure was provided.

EINVAL
Invalid argument passed.

ENOMEM
Insufficient memory is available.

EOPNOTSUPP
The sending socket has not been assigned a name.

poll()
LINX socket descriptors can be used in the poll(2) call.

The call returns a bitmask that indicates the state of the LINX socket receive queues. The following

possible bits can be set at return from this function: POLLERR if the LINX socket is in an error

state, POLLHUP if the LINX socket has been shutdown/released, POLLIN and POLLRDNORM if

the LINX socket has data to read in receive queue.
select()

LINX socket descriptors can be used together with other file descriptors in the select(2) call.
ioctl()

IOCTL requests are sent to a LINX socket using the ioctl(2) call. See below for all IOCTL request

codes supported by LINX sockets.
close()

A LINX socket created by a socket(2) call can be closed with close(2) . Note that this function shall
NOT be used on any LINX socket descriptor created with /inx_open(3) or obtained by the LINX API

function linx_get_descriptor(3) .

On success, 0 is returned, otherwise -1 is returned and errno can be one of the following errors:

LINX Socket Interface

ENEA LINX(7) manual page

EBADF
An invalid descriptor was specified.

Only the calls described above are supported by a LINX socket. The following are NOT supported on LINX
sockets and shall not be used: bind(2) , connect(2) , socketpair(2) , accept(2) , getname(2) , listen(2) ,
shutdown(2) , setsockopt(2) , getsockopt(2) , mmap(2) and sendpage(2) .

IOCTL Request Codes

The following IOCTL request codes can be accessed using ioctl(2) on LINX sockets:
LINX_IOCTL_SEND

Sends a signal from a LINX socket sd. The correct syntax is:

struct linx sndrcv_param *sndrcv;

error = ioctl(sd, LINX IOCTI_SEND, sndrcv);

sndrcv is a linx_sndrcv_param structure:

struct linx_sndrcv_param
{
_ u32 from;
_u32 to;
__u32 size;
__u32 sig_attr;
__u32 sigselect_size;
__u64 sigselect;
__u32 tmo;
__u64d buffer;
bi

from is the spid of the sender, the sender does not need to be the current socket, the signal is
sent from the current socket but the receiver will see the from as the sending spid, the default
case is that from is the spid of the current LINX socket. to is the spid of the receiver, size is
the size of the signal to be sent and sig_attr are the attributes of the signal. The sigselect_size
and sigselect are not used by LINX_TOCTL_SEND and notused is for padding the struct
since it needs to be 64-bit aligned but should be zeroed for future use. buffer is the pointer to
the buffer to be sent, it is passed as a 64 bit unsigned value to be both 32-bit and 64-bit
compatible.

On success, the number of bytes sent is returned.
LINX_IOCTL_RECEIVE

Receives a signal on a LINX socket sd. The call will block until a signal is received. The
correct syntax is:

struct linx sndrcv_param *sndrcv;

IOCTL Request Codes

ENEA LINX(7) manual page

error = ioctl(sd, LINX IOCTI_RECEIVE, sndrcv);

sndrcv is a linx_sndrcv_param structure:

struct linx_sndrcv_param
{
_ u32 from;
_u32 to;
_ u32 size;
__u32 sig_attr;
__u32 sigselect_size;
__u64 sigselect;
__u32 tmo;
__u64 buffer;
bi

The from field should be set to LINX_ILLEGAL_SPID if signals from anyone should be
received or if only signals from a specific spid should be received then from should be set to
that spid. If LINX_ILLEGAL_SPID was set the from will contain the spid of the sender
after the return of the call. The to field is not used when receiving a signal. The size field is
the size of the provided buffer. When the call returns the sig_attr field is set to the attribute
the signal carriers. The sigselect field is an array of LINX_SIGSELECT numbers to be
received. The first position in the array contains the number of entries in the list that follows.
If the first position is set to a negative count, all LINX signals except those listed will be
received. The size of the array is sigselect_size. When the tmo field is used the call waits
maximum tmo milliseconds before returning even if no signal has been received, if a
blocking receive is requested the tmo field should be ~0 (OxFFFFFFFF), this will block
forever. If no signal is received the. buffer pointer will be set to NULL (the provided buffer
is always consumed). The buffer field is a pointer to the buffer provided by the user.

On success, the number of bytes received is returned. If the received signal is larger than the
supplied payload buffer, zero is returned and the signal buffer size is written as a 32-bit value
in the first 4 bytes of the payload buffer.

LINX_IOCTL_REQUEST_TMO

Request a timeout, a signal is sent to the requesting LINX endpoint when a timeout has
expired. The correct syntax is:

struct linx_ tmo_param *tmo_param;

error = ioctl(sd, LINX IOCTI_REQUEST TMO, tmo_param);

tmo_param is a linx_tmo_param structure:

struct linx_tmo_param

{
LINX_OSTIME tmo;
LINX_OSBUFSIZE sigsize;
union LINX_SIGNAL *sig;
LINX_OSTMOREF tmoref;

bi

IOCTL Request Codes

ENEA LINX(7) manual page

tmo is the timeout in milliseconds and the actual timeout time is rounded upward to the nest
larger tick, the call guarantees at least the number of milliseconds requested, sig is a pointer to
the signal that will be returned when the timeout expires, if sig is LINX_NIL then the default
timeout signal with signal number LINX_OS_TMO_SIG is received instead, sigsize is the
size of the provided signal, if no signal is provided the value must be set to zero.

On success, an timemout reference is returned in tmoref. This reference can be used in
LINX IOCTL_CANCEL_TMO and LINX IOCTL_MODIFY_TMO.

LINX_IOCTL_CANCEL_TMO

Cancel a pending timeout, the correct syntax is:

struct linx_ tmo_param *tmo_param;

error = ioctl(sd, LINX IOCTI_CANCEIL_TMO, tmo_param);

tmo_param is a linx_tmo_param structure:

struct linx_tmo_param

{
LINX_OSTIME tmo;
LINX_OSBUFSIZE sigsize;
union LINX_SIGNAL *sig;
LINX_OSTMOREF tmoref;

bi

tmo, sigsize and sig are ignored, tmoref is used to identify which timeout is to be canceled, it
is guaranteed that the timeout signal cannot be received after cancellation.

LINX_IOCTL_MODIFY_TMO

Modifies a pending timeout, the correct syntax is:

struct linx tmo_param *tmo_param;

error = ioctl(sd, LINX IOCTIL_MODIFY TMO, tmo_param);

tmo_param is a linx_tmo_param structure:

struct linx_tmo_param

{
LINX_OSTIME tmo;
LINX_OSBUFSIZE sigsize;
union LINX_SIGNAL *sig;
LINX_OSTMOREF tmoref;

bi

sigsize and sig are ignored, tmoref is used to identify which timeout is to be modified, tmo is
the new timeout value.

IOCTL Request Codes

ENEA LINX(7) manual page
LINX_TOCTL_REQUEST_NEW_LINK

Request a signal when a new link is available, the correct syntax is:

struct linx new_link param *new_Iink param;

error = ioctl(sd, LINX IOCTIL_REQUEST NEW_LINK, new_link_param);

new_link_param is a linx_new_link_param structure:

struct linx_new_link_param
{
uint32_t token;
uint32_t new_link_ref;

by

token is passed to and from the LINX kernel module keeping track of which links the caller
already have been notified about, the token value is ignored the first time a LINX endpint
requests a new link signal. The token received in the new link signal should then be used in
the next new link signal request. new_link_ref is used to cancel a pending new link signal
request.

The syntax of the new link signal received when a new link is available is:

struct linx_new_link {
LINX_SIGSELECT signo;
LINX_NLTOKEN token;
int name;
int attr;
char buf([l];

bi

signo is LINX_OS_NEW_LINK_SIG, token is the token value to be used in the next request
for a new link signal, name is the offset into buf where the name of the new link is stored, the
name is null terminated, attr is the offset into buf where the attributes, if any, of the link are
stored, the attribute string is null terminted, buf is a character buffer containg the name and
the attributes, if any, of the link.

LINX_TIOCTL_CANCEL_NEW_LINK

Cancels a pending new link signal request, the correct syntax is:

struct linx new_link param *new_Iink param;

error = ioctl(sd, LINX IOCTI_CANCEL NEW_LINK, new_link_param);

new_link_param is a linx_new_link_param structure:

IOCTL Request Codes

ENEA LINX(7) manual page

struct linx_new_link_param
{
uint32_t token;
uint32_t new_link_ref;

bi

token is ignored, new_link_ref is used to identify which pending new link signal request is to

be cancelled, after the cancellation it is guarnateed that no more new link signals can be
received.

LINX_IOCTL_HUNTNAME

Sets the name of a LINX socket sd and returns its binary LINX endpoint identifier, the spid.
The correct syntax is:

struct linx huntname *huntname;

error = ioctl(sd, LINX IOCTI_HUNTNAME, huntname);

huntname is a linx_huntname structure:

struct linx_huntname

{
LINX_SPID spid;
size_t namelen;
char *name;

bi

namelen is the size in bytes of the string name that contains the name to assign to the socket.

On success, spid is set to the spid assigned to the LINX socket.

LINX_IOCTL_HUNT

Hunts for a LINX endpoint (that has been assigned a name) to obtain its spid. The correct
syntax is:

struct linx hunt_param *hunt_param;

error = ioctl(sd, LINX IOCTI_HUNT, hunt_param);

hunt_param is a linx_hunt_param structure:

struct linx_hunt_param

{

LINX_OSBUFSIZE sigsize;
union LINX_SIGNAL *sig;
LINX_SPID from;
size_t namelen;
char *name;

IOCTL Request Codes

11

ENEA LINX(7) manual page

bi

The sig parameter optionally holds a signal of size sigsize to be received when the other
LINX socket is available. If no signal (NULL) is provided, the LINX default hunt signal of
type LINX_OS_HUNT_SIG will be used. The from parameter shall be set to the owner of
the hunt. In the normal case, this is the spid of the LINX socket performing the hunt call. If
the spid associated with a different LINX socket is provided, the hunt can be cancelled by
closing that socket. The hunt signal is always sent to the LINX socket performing the hunt
call. The namelen is the size of the string name that contains the name of the LINX endpoint
to be hunted for.

LINX_IOCTL_ATTACH

Attaches to a LINX endpoint in order to supervise it, i.e. to get an attach signal if it becomes
unavailable. The correct syntax is:

struct linx attach_param *attach param;

error = ioctl(sd, LINX IOCTIL_ATTACH, attach_param);

attach_param is a linx_attach_param structure:

struct linx_attach_param

{

LINX_SPID spid;
LINX_OSBUFSIZE sigsize;
union LINX_SIGNAL *sig;
LINX_OSATTREF attref;

}i
The spid field is the spid of the LINX endpoint to supervise. The sig parameter optionally
holds a LINX signal of size sigsize to be received when the supervised LINX endpoint
becomes unavailable. If no signal (NULL) is provided, the LINX default attach signal of type
LINX_OS_ATTACH_SIG will be used.

On success, an attach reference is returned in attref. This reference can be used in
LINX IOCTL_DETACH later.

LINX_IOCTL_DETACH

Detaches from a supervised LINX endpoint, i.e. stops supervising it. The correct syntax is:

struct linx detach_param *detach param;

error = ioctl(sd, LINX IOCTIL_DETACH, detach_param);

The detach_param parameter is a struct linx_detach_param with the following fields:

IOCTL Request Codes 12

ENEA LINX(7) manual page

struct linx_detach_param

{
LINX_OSATTREF attref;

}

The attref field is an attach reference returned from a LINX_TOCTL_ATTACH call.
LINX IOCTL_SET RECEIVE FILTER

Sets up a receive filter prior to a select(2) call. The correct syntax is:

struct linx receive_ filter param *rfp;

error = ioctl(sd, LINX IOCTL SET RECEIVE FILTER, rfp);

rfp is a linx_receive_filter_param structure:

struct linx_receive_filter_param

{
LINX_SPID from;
LINX_OSBUFSIZE sigselect_size;
const LINX_SIGSELECT *sigselect;

bi

The from parameter specifies that only signals from a specific spid should be received and
sigselect is an array of LINX_SIGSELECT numbers to be received. The first position in the
array contains the number of entries in the list that follows. If the first position is set to a
negative count, all LINX signals except those listed will be received. The size of the array is
sigselect_size.

LINX_TIOCTL_REGISTER_LINK_SUPERVISOR

Registers this socket as a supervisor of LINX links. The correct syntax is:

error = ioctl(sd, LINX IOCTL REGISTER_LINK_SUPERVISOR, 0);

When a link is established to another node, a notification signal will be sent to all LINX
sockets that have registered as link supervisor. This signal has the format:

IOCTL Request Codes

13

ENEA LINX(7) manual page

struct linx_new_link

{
LINX_SIGSELECT signo;

int name;
int attr;
char buf[1];

by

The signo is LINX_OS_LINK_SIG. The name of the link begins name bytes into buf and

its attributes starts attr bytes into buf. Both the name and attributes are null terminated strings

assigned to a link with the /inxcfg(1) command.

To be notified when a link becomes unavailable, first do a LINX_IOCTL_HUNT on the link

name. This returns a spid representing the link. Then the link can be supervised using

LINX_TOCTL_ATTACH to that spid.
LINX_IOCTL_UNREGISTER_LINK_SUPERVISOR

Unregister this socket as a supervisor of LINX links. The correct syntax is:

error = ioctl(sd, LINX IOCTL UNREGISTER_LINK SUPERVISOR, 0);

LINX TOCTL_VERSION

Returns the version of the LINX kernel module. The correct syntax is:

unsigned int version;

error = ioctl(sd, LINX IOCTI_VERSION, &version);

On success, the version parameter contains the version of the LINX kernel module. The
LINX version number is a 32-bit number composed of an 8-bit major version, an 16-bit minor
version, and a 8-bit seq (patch) number.

LINX_IOCTL_INFO

Retrieves information from the LINX kernel module. The correct syntax is:

struct linx info info;

error = ioctl(sd, LINX IOCTI_INFO, &info);

The info parameter is a struct linx_info with the following fields:

IOCTL Request Codes

14

ENEA LINX(7) manual page

struct linx_info
{
int type;
void *type_spec;

bi

The type field indicates the requested type of information and type_spec is a pointer to a
struct that will contain input and return parameters.

Note that information retrieved with LINX_IOCTL_INFO may have become inaccurate when
used in a subsequent call. The application must be prepared to handle errors related to this.

The different kinds of information that can be retrieved from the LINX kernel module are:

LINX_INFO_SUMMARY

Provides a summary of the most important information from the LINX kernel
module.

struct linx_info info;
struct linx info_summary info_ summary;
info.type = LINX INFO_SUMMARY;

info.type_spec = &info_summary;

The linx_info_summary structure is defined as:

struct linx_info_summary

{
int no_of_local_sockets;
int no_of_remote_sockets;
int no_of_link_sockets;
int no_of_pend_attach;
int no_of_pend_hunt;
int no_of_qgueued_signals;

bi

The no_of_local_sockets field is the number of LINX sockets open locally,
no_of remote_sockets is the number of internal sockets open that have been
created by the LINX kernel module to represent remote LINX endpoints. The
no_of link_sockets field is the number of open sockets representing LINX
links to other nodes. The no_of_pend_attach field is the number of pending
attaches, no_of_pend_hunt is the number of pending hunts and

IOCTL Request Codes

ENEA LINX(7) manual page

no_of_queued_signals is the number of queued signals.

LINX INFO_SOCKETS

Returns the number of open LINX sockets and their LINX endpoint
identifiers (spids).

struct linx info info;
struct linx_info_sockets info _sockets;
info.type = LINX INFO_SOCKETS;

info.type_spec = &info_sockets;

The linx_info_sockets structure is defined as:

struct linx_info_sockets

{
LINX_OSBOOLEAN local;
LINX_OSBOOLEAN remote;
LINX_OSBOOLEAN link;

int buffer_size;
int no_of_sockets;
LINX_SPID *pbuffer;

by

If local is true, local sockets are included in the output, if remote is true,
remote sockets are included and if link is true, sockets representing LINX
links are included. The number of LINX sockets matching the search is
returned in no_of_sockets and the array of spids is returned in the provided
buffer. of size buffer_size bytes. If the provided buffer is too small, not all
sockets will be included.

LINX_INFO_TYPE

Returns the type of a LINX endpoint.

struct linx info info;

struct linx info_type info type;

IOCTL Request Codes

ENEA LINX(7) manual page

info.type = LINX_INFO_TYPE;

info.type_spec = &info_type;

The linx_info_type structure is defined as:

struct linx_info_type
{
LINX_SPID spid;
int type;
bi

The spid field is the identifier of the LINX endpoint for which the type is
requested. The type is returned in type. A LINX endpoint can be of types:
LINX_TYPE_UNKNOWN, LINX_TYPE_LOCAL,
LINX_TYPE_REMOTE, LINX_TYPE_LINK, LINX_TYPE_ILLEGAL

or LINX_TYPE_ZOMBIE.

LINX_INFO_STATE

Returns the state of a LINX endpoint.

struct linx_info info;
struct linx_info_state info state;
info.type = LINX_INFO_STATE;

info.type_spec = &info_state;

The linx_info_state structure is defined as:

struct linx_info_state

{
LINX_SPID spid;
int state;

bi

The spid field is the identifier of the LINX endpoint for which the state is
requested. The state is returned in state. A LINX socket can be in states:
LINX_STATE_UNKNOWN, LINX_STATE_RUNNING,

IOCTL Request Codes

17

ENEA LINX(7) manual page
LINX_STATE_RECYV or LINX_STATE_POLL.

LINX_INFO_FILTERS

Returns information about the receive filters set up by a LINX endpoint.

struct linx info info;
struct linx info_filters info filters;
info.type = LINX INFO_FILTERS;

info.type_spec = &info filters;

The linx_info_filters structure is defined as:

struct linx_info_filters

{

LINX_SPID spid;

LINX_SPID from_filter;

int buffer_size;

int no_of_sigselect;

LINX_SIGSELECT *buffer;
by

The spid field is the identifier of the LINX endpoint for which the receive
filter is requested. If the endpoint has setup a receive filter only accepting
signals from a specific LINX endpoint, the spid of that endpoint is returned in
from_filter. The number of LINX_SIGSELECT signal numbers in the
receive filter is returned in no_of_sigselect and an array of these signal
numbers are returned in the provided buffer. The buffer_size is the size in
bytes of the buffer. If the buffer is too small, not all signal numbers in the
filter are included.

LINX INFO_RECV_QUEUE

Returns the receive queue of a LINX endpoint.

struct linx info info;

struct linx info_recv_queue info_recv_queue;

IOCTL Request Codes

ENEA LINX(7) manual page

info.type = LINX_INFO_RECV_QUEUE;

info.type_spec = &info_recv_gueue;

The linx_info_recv_queue structure is defined as:

struct linx_info_recv_gueue

{

LINX_SPID spid;
int buffer_size;
int no_of_signals;

struct linx_info_signal *buffer;

by

The spid field is the identifier of the LINX endpoint for which the receive
queue is requested. The number of signals in the queue is returned in
no_of_signals. An array with queue information is returned in the provided
buffer. The buffer_size is the size in bytes of the buffer. If the buffer is too
small, not all signals are included. The linx_info_signal structure is defined
as:

struct linx_info_signal

{
LINX_SIGSELECT signo;
int size;
LINX_SPID from;

Vi

The signo field holds the signal number, size is the size in bytes of the signal
and from is the spid of the sending LINX endpoint.

LINX_INFO_PEND_ATTACH

Returns information about pending attaches from or to a LINX endpoint.

struct linx_info info;
struct linx info_pend attach info_pend _attach;
info.type = LINX_INFO_PEND_ATTACH;

info.type_spec = &info_pend attach;

IOCTL Request Codes

ENEA LINX(7) manual page

The linx_info_pend_attach structure is defined as:

struct linx_info_pend_attach

{

LINX_SPID spid;

int from_or_to;

int buffer_size;
int no_of_attaches;

struct linx_info_attach *buffer;

by

The spid field is the identifier of the LINX endpoint for which attach
informations is requested. If from_or_to is set to LINX_ATTACH_FROM,
information about attaches from the spid is returned. If it is set to
LINX_ATTACH_TO, information about attaches to the spid is returned.
The number of attaches to/from the spid is returned in no_of_attaches,
Information about the attaches are returned in the provided buffer. The
buffer_size is the size in bytes of the buffer. If the buffer is too small, not all
attaches are included. The linx_info_attach structure is defined as:

struct linx_info_attach

{
LINX_SPID spid;
LINX_OSATTREF attref;
struct linx_info_signal attach_signal;

by

The spid is the identifier of the LINX endpoint that has attached or has been
attached to (depending on what from_or_to is set to). The attref field is the
attach reference and attach_signal is the attach signal.

LINX_INFO_PEND_HUNT

Returns information about pending hunts issued from any LINX endpoint.

struct linx_info info;
struct linx info_pend hunt info pend hunt;
info.type = LINX_INFO_PEND_HUNT;

info.type_spec = &info_pend _hunt;

IOCTL Request Codes

20

ENEA

LINX(7) manual page

The linx_info_pend_hunt structure is defined as:

struct linx_info_pend_hunt

{

LINX_SPID spid;

int buffer_size;
int strings_offset;
int no_of_hunts;

struct linx_info_hunt *buffer;

by

The spid field is the identifier of the LINX endpoint for which hunt
information is requested. The number of pending hunts is returned in

no_of hunts and information about each pending hunt is returned in the
provided buffer. The buffer_size is the size in bytes of the buffer. If the
buffer is too small, not all hunts are included. The strings_offset is the offset
into the buffer where the name strings are stored. Each linx_info_hunt
structure is defined as:

struct linx_info_hunt

{
struct linx_info_signal hunt_signal;
LINX_SPID owner;
char *hunt_name;

by

The owner field is the owner of the pending hunt and hunt_name is a string
containing the name hunted for. The hunt_signal is the hunt signal. The
linx_info_signal structure is described under
LINX_INFO_RECV_QUEUE.

LINX_INFO_PEND_TMO

Returns information about pending timeouts issued from any LINX endpoint.

struct linx_info info;
struct linx_ info_pend tmo info_ pend tmo;
info.type = LINX INFO_PEND_TMO;

info.type_spec = &info_pend_tmo;

IOCTL Request Codes 21

ENEA LINX(7) manual page

The linx_info_pend_tmo structure is defined as:

struct linx_info_pend_tmo

{

LINX_SPID spid;
int buffer_size;
int no_of_timeouts;

struct linx_info_tmo *buffer;

by

The spid field is the identifier of the LINX endpoint for which hunt
information is requested. The number of pending timeouts is returned in
no_of_timeouts and information about each pending timeout is returned in
the provided buffer. The buffer_size is the size in bytes of the buffer. If the
buffer is too small, not all timeouts are included. Each linx_info_tmo
structure is defined as:

struct linx_info_tmo

{
LINX_OSTIME tmo;
LINX_OSTMOREF tmoref;
struct linx_info_signal tmo_signal;

by

The tmo field is the remaining time and tmoref is the timeout reference. The
tmo_signal holds the timeout signal information.

LINX_INFO_SIGNAL_PAYLOAD

Returns the payload of a signal owned by a LINX endpoint.

struct linx_info info;
struct linx_info_signal_payload info_signal_ payload;
info.type = LINX_INFO_SIGNAIL_PAYLOAD;

info.type _spec = &info_signal payload;

The linx_info_signal_payload structure is defined as:

IOCTL Request Codes

ENEA LINX(7) manual page

struct linx_info_signal_payload

{

LINX_SPID spid;

int buffer_size;
struct linx_info_signal signal;

int payload_size;
char *buffer;

by

The spid field is the identifier of the LINX endpoint owning the signal and
signal is a linx_info_signal structure returned from a previous LINX_INFO
call. The signal buffer will be returned in the provided buffer. The
buffer_size is the size in bytes of the buffer. If the provided buffer is too
small, only the beginning of the signal buffer is returned. The payload_size
shows the size in bytes of the returned signal payload. If the provided buffer
is larger than the signal payload, payload_size will be less then buffer_size.
If no signal payload matching the signal the payload_size will be set to zero.

LINX_INFO_NAME

Returns the name of a LINX endpoint.

struct linx_info info;
struct linx info_name info name;
info.type = LINX_INFO_NAME;

info.type_spec = &info_name;

The linx_info_name structure is defined as:

struct linx_info_name

{
LINX_SPID spid;
int namelen;
char *name;

bi

The spid field is the identifier of the LINX endpoint for which the name is
requested. The namelen field is the length of the provided name buffer in
which the name is be returned. If the LINX socket endpoint has not been
assigned a name yet zero is returned and name is set to the empty string.

IOCTL Request Codes

ENEA LINX(7) manual page
LINX_INFO_OWNER

Returns the process (PID) that owns a LINX endpoint.

struct linx_info info;
struct linx info_owner info owner;
info.type = LINX_INFO_OWNER;

info.type_spec = &info_owner;

The linx_info_owner structure is defined as:

struct linx_info_owner

{
LINX_SPID spid;
pid_t owner;

by

The spid field is the identifier of the LINX endpoint for which the
information is requested. On success, the PID of the owning process is
returned in owner.

LINX_INFO_STAT

Returns statistics for a LINX endpoint. This requires that the LINX kernel

module has been compiled with the "SOCK_STAT=yes" setting.

struct linx_info info;
struct linx_info_stat info_stat;
info.type = LINX INFO_STAT;

info.type_spec = &info_stat;

The linx_info_stat structure is defined as:

struct linx_info_stat

IOCTL Request Codes

24

ENEA LINX(7) manual page

LINX_SPID spid;

uint64_t no_sent_local_signals;
uint64_t no_recv_local_signals;
uint64_t no_sent_local_bytes;
uint64_t no_recv_local_bytes;
uint64_t no_sent_remote_signals;
uint64_t no_recv_remote_signals;
uint64_t no_sent_remote_bytes;
uint64_t no_recv_remote_bytes;
uint64_t no_sent_signals;
uint64_t no_recv_signals;
uint64_t no_sent_bytes;

uint64_t no_recv_bytes;

uint64_t no_queued_bytes;
uint64_t no_queued_signals;

}i

The spid is the identifier of the LINX endpoint for which statistics is
required. If the LINX kernel module has not been compiled with
"SOCK_STAT=yes", ioctl returns -1 and errno is set to ENOSYS.

Known Bugs

None.

See Also

Generic LINX for Linux man-page:
linx(7) (this document)

LINX API man-pages:

linx.h(3) , linx_types.h(3) ,

linx_alloc(3) , linx_attach(3) , linx_cancel_tmo(3) , linx_close(3) ,

linx_detach(3), linx_free_buf(3) , linx_free_name(3), linx_free_stat(3) ,
linx_get_descriptor(3) , linx_get_name(3) , linx_get_spid(3),

linx_get_stat(3) , linx_hunt(3) , linx_hunt_from(3) , linx_modify_tmo(3),
linx_open(3) , linx_receive(3) , linx_receive_from(3) ,

linx_receive_w_tmo(3) , linx_request_tmo(3) , linx_send(3) , linx_send_w_opt(3) ,
linx_send_w_s(3) , linx_sender(3) , linx_set_sigsize(3) , linx_sigattr(3) , linx_sigsize(3)

Related LINX applications
linxcfg(1) , linxdisc(8) , linxdisc.conf(5) , linxstat(1) , mkethcon(1) , mklink(1) , mktcpcon(1),

rmethcon(1) , rmlink(1) , rmtcpcon(1)

Related generic Linux man-pages:
socket(2) , close(2) , sendto(2) , sendmsg(2) , recvfrom(2) , recvmsg(2) , poll(2) , select(2) , ioctl(2)

Author

Enea LINX team

Known Bugs 25

ENEA LINX_ALLOC(3) manual page

LINX ALLOC(3) manual page

Name

linx_alloc() - Allocate a signal buffer on a LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

union LINX_SIGNAL *linx_alloc(LINX */inx, LINX_OSBUFSIZE size, LINX_SIGSELECT sig_no);

Description

linx_alloc() is used to allocate a signal buffer of the indicated size The first 4 bytes of the signal buffer are
initialized with the provided signal number sig_no. The signal number can be replaced later by writing a new
value in the first 4 bytes of the buffer.

The new buffer is owned by the LINX endpoint with which it was created. The ownership is transferred to the
receiving LINX endpoint when the signal is successfully sent using linx_send(3) . If the signal is not sent, the
owner must free the buffer by calling linx_free_buf(3) using the same linx handle. The buffer will be freed if
the owning LINX endpoint is closed or the process owning the endpoint exits.

linx is the handle to the LINX endpoint.

size is the size in bytes of the new signal buffer. The minimum size is 4 bytes, needed to store the signal
number.

sig_no is the signal number stored at the beginning of the signal buffer.

Return Value

On success, a pointer to the allocated signal buffer is returned. On error, LINX_NIL is returned and errno will
be set.

Errors
EMSGSIZE The size is invalid.

ENOMEM Insufficient memory is available.

Bugs/Limitations

None.

Notes

A LINX signal can be only be sent by the LINX endpoint that owns it, i.e. the endpoint it was created from or
received on. It can not be reused and sent by another LINX endpoint.

LINX_ALLOC(3) manual page 26

ENEA LINX_ALLOC(3) manual page

If a process, which has allocated signal buffers, calls fork(2) , both instances will own copies of the signal
buffers. As only one process may use a LINX endpoint and its resources, either the parent or the child MUST
close the LINX endpoint using linx_close(3) .

See Also

linx(7) , linx_close(3) , linx_free_buf(3) , linx_hunt(3) , linx_send(3) , fork(2)

Author

Enea LINX team

Notes 27

ENEA LINX_ATTACH(3) manual page

LINX ATTACH(3) manual page

Name

linx_attach() - Attach to and supervise a LINX endpoint
linx_detach() - Detach from an attached LINX endpoint

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSATTREF linx_attach(LINX */inx, union LINX_SIGNAL **sig, LINX_SPID spid);

int linx_detach(LINX */inx, LINX_OSATTREF *attref);

Description

linx_attach() is used to supervise another LINX endpoint. When the other endpoint is closed or becomes
unavailable, an attach signal is sent to the supervising LINX endpoint /inx as a notification. If a signal sig is
provided, this signal will be received when the attach is triggered. If sig is NULL, the default LINX attach
signal with signal number LINX_OS_ATTACH_SIG is received instead. The linx_attach() call consumes the
signal, taking over its ownership, and sets the sig pointer to LINX_NIL. The signal is consumed if an error
occurs too. If sig is corrupt, abort(3) is called.

linx_detach() is used to detach from an attached LINX endpoint. It's an error to detach from a LINX endpoint
more than once or to detach from a LINX endpoint after the attach signal has been received. It is not an error
to detach if the attach signal is waiting in the receive queue of the LINX endpoint. To prevent multiple
detaches, linx_detach() sets the attref pointer to LINX_ILLEGAL_ATTREF.

linx is the handle of the LINX endpoint.

spid is the identifier of the LINX endpoint to supervise.

sig is either NULL or a user defined LINX signal.

attref is the LINX_OSATTREEF attach reference obtained from linx_attach().

Return Value

linx_attach() returns an attach reference (LINX_OSATTREF) when successful. This attach reference can be
used to cancel the attach (detach) after the attach is done. linx_detach() returns O on success.

On failure, linx_attach() returns LINX_ILLEGAL_ATTREF and linx_detach() returns -1, and errno is set
appropriately.

Errors

EBADF, ENOTSOCK The /inx handle refers to an invalid socket descriptor.

LINX_ATTACH(3) manual page 28

ENEA LINX_ATTACH(3) manual page

Bugs/Limitations

None.

Example

In this example the server attaches to the client and tells the client to exit and waits for the attach signal.

Server:

#include <linx.h>

#define CLIENT_DONE_SIG 0x1234
int

main (int argc, char *argv([])

{

}

LINX *linx;

LINX_SPID client;

union LINX_SIGNAL *sig;

const LINX_SIGSELECT sel_hunt_sig[] = { 1, LINX_OS_HUNT_SIG };
const LINX_SIGSELECT sel_att_sig [] = { 1, LINX_OS_ATTACH_SIG };
/* Create a LINX endpoint with huntname "attacher" */

linx = linx_open ("attacher", NULL, O0);

/* Hunt for the client */

linx_hunt (linx, "client", NULL);

/* Receive hunt signal */

linx_receive (linx, é&sig, sel_hunt_sig);

/* Retrive the clients spid */

client = linx_sender (linx, &sig)

/* Free the hunt signal */

linx_free_buf (linx, é&sigqg);

/* Attach to the client */

linx_attach(linx, client, NULL);

/* Create "done" signal */

sig = linx_alloc(linx, sizeof (LINX_SIGSELECT), CLIENT_DONE_SIG);
/* Send "done" signal to client */

linx_send(linx, &sig, client);

/* Wait for the attach signal */

linx_receive(linx, é&sig, sel_att_sig);

/* Close the LINX endpoint */

linx_close (linx);

return 0;

Client:

#include <linx.h>

int

main (int argc, char *argv([])

{

LINX *linx;
union LINX_ SIGNAL *sig;
const LINX_SIGSELECT sel_done_sig[] = { 1, CLIENT_DONE_SIG };

/* Open a LINX endpoint with huntname "client" */

linx = linx_open("client", NULL, O0);

/* Wait for server to send "done" signal */

linx_receive (linx, &sig, sel_done_sig);

/* Close the LINX endpoint - this will trigger the attach */
linx_close (linx);

return 0;

Bugs/Limitations

29

ENEA LINX_ATTACH(3) manual page

See Also

linx(7) , linx_attach(3) , linx_close(3) , linx_detach(3) , linx_hunt(3) , linx_send(3)

Author

Enea LINX team

See Also

30

ENEA LINX_CANCEL_NEW_LINK(3) manual page

LINX_CANCEL_NEW_LINK(3) manual page

Name

linx_request_new_link() - request a new link signal.
linx_cancel_new_link() - cancel a new link request.

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_NLREF linx_request_new_link(LINX */inx, LINX_NLTOKEN troken);

int linx_cancel_new_link(LINX */inx, LINX_NLREF *nlref);

Description

Request a new link signal from LINX when a new LINX link is available. The token is passed back and forth
between the calling LINX endpoint and the LINX kernel module to keep track of which LINX link was sent
in the last new link signal. The first time a LINX endpoint calls linx_request_new_link() the value of the
token is ignored. The token is then returned in the new link signal from the LINX kernel module and should
be used by the LINX endpoint in the next linx_request_new_link() call. If a LINX link unknown to the
LINX endpoint is present when the linx_request_new_link() call is made a new link signal is immediately
sent to the caller. Two or more consecutive calls to linx_request_new_link() are allowed from the same
LINX endpoint. The linx_request_new_link() call returns a reference handle which is used in the
linx_cancel_new_link() call if a request is to be cancelled. After a cancellation no more new link signals are
received if the socket has no other pending new link requests.

linx is the handle of the own LINX endpoint.
token is passed back and forth between the calling LINX endpoint and the LINX kernel module.
nlref is the reference used to cancel a pending new link request.

The syntax of the new link signal received when a new link is available is:

struct linx_new_link {
LINX_SIGSELECT signo;
LINX_NLTOKEN token;
int name;
int attr;
char buf([l];

Vi

signo is LINX_OS_NEW_LINK_SIG, token is the token value to be used in the next request for a new link
signal, name is the offset into buf where the name of the new link is stored, the name is null terminated, attr
is the offset into buf where the attributes, if any, of the link are stored, the attribute string is null terminted,
buf is a character buffer containg the name and the attributes, if any, of the link.

LINX_CANCEL_NEW_LINK(3) manual page 31

ENEA LINX_CANCEL_NEW_LINK(3) manual page

Return Value

linx_request_new_link() returnes an new link reference (LINX_NLREF) when successful, otherwise on

failure LINX_ILLEGAL_NLREEF is returned. linx_cancel_new_link() returns O on success and -1 on failure.

In case of failure errno will be set.

Errors
EBADF The linx handle refers to an invalid socket descriptor.
ENOMEM Insufficient memory is available.

EINVAL Returned by linx_cancel_new_link() when trying to cancel an non-existent new link request.

Bugs/Limitations

None.

See Also

linx(7)

Author

Enea LINX team

Return Value

32

ENEA LINX_CANCEL_TMO(3) manual page

LINX CANCEL_TMO(3) manual page

Name

linx_request_tmo() - request timeout with specified signal
linx_cancel_tmo() - cancel the specified timeout.
linx_modify_tmo() - modify the specified timeout

Synopsis

#include <linx_types.h>
#include <linx.h>

LINX_OSTMOREF linx_request_tmo(LINX */inx, LINX_OSTIME fmo, union LINX_SIGNAL *%*5sig);
int linx_cancel_tmo(LINX */inx, LINX_OSTMOREF *tmoref);

int linx_modify_tmo(LINX */inx, LINX_OSTMOREF *tmoref, LINX_OSTIME tmo);

Description

linx_request_tmo() is used to request a signal, sig, to be sent to the requesting LINX endpoint /inx when a
timeout has expired. Information necessary for cancelling the time-out is returned. The actual time-out time,
tmo, is rounded upward to the next larger tick because a time-out can only trigger when a system clock tick is
received. Hence, the routine guarantees at least the number of milliseconds requested, but may add a few more
depending on the tick resolution. When several time-out signals are generated at the same clock tick, the order
is unspecified. If sig is NULL, the default LINX timeout signal with signal number LINX_OS_TMO_SIG is
received instead. The linx_request_tmo () call consumes the signal, and sets the sig pointer to LINX_NIL. The
signal is also consumed if an error occurs.

linx_cancel_tmo() is used to cancel a timeout. The time-out is identified by the tmoref parameter, which was
set by linx_request_tmo(). It's an error to cancel a timeout more than once or to cancel a timeout after the
timeout signal has been received. It is not an error to cancel the timeout if the timeout signal is waiting in the
receive queue of the LINX endpoint. To prevent multiple cancellations, linx_cancel_tmo() sets the tmoref
pointer to LINX_ILLEGAL_TMOREF.

linx_modify_tmo() is used to modify a timeout. The time-out is identified by the tmoref parameter, which
was set by linx_request_tmo(). It's an error to modify a timeout after the timeout signal has been received. It
is not an error to modify the timeout if the timeout signal is waiting in the receive queue of the LINX
endpoint.

linx is the handle of the LINX endpoint.

spid is the timeout time in milliseconds.

sig is either NULL or a user defined LINX signal.

tmoref is the reference to the timeout obtained from linx_request_tmo().

LINX_CANCEL_TMO(3) manual page 33

ENEA LINX_CANCEL_TMO(3) manual page

Return Value

linx_request_tmo() returns an timeout reference (LINX_OSTMOREF) when successful. This timeout
reference can be used to cancel the timeout. linx_cancel_tmo() returns 0 on success.

On failure, linx_request_tmo() returns LINX_ILLEGAL_TMOREF while linx_cancel_tmo() and
linx_modify_tmo() both returns -1. In all cases errno will be set appropriately.

Errors
EBADF, ENOTSOCK The /inx handle refers to an invalid socket descriptor.
ENOMEM Not enough memory.

EINVAL Invalid argument.

Bugs/Limitations

None.

Example

This example shows how to request and wait for a timeout.

#include <linx.h>
int
main (int argc, char *argv([])
{
LINX *linx;
union LINX_SIGNAL *sig;
const LINX_SIGSELECT sel_tmo_sig [] = { 1, LINX_OS_TMO_SIG };
/* Create a LINX endpoint */
linx = linx_open ("tmo-test", NULL, O0);
/* Request a one second timeout. When the timeout expires the
default signal will be returned. */
linx_request_tmo(linx, 1000, NULL);
/* Wait for the timeout signal. */
linx_receive(linx, &sig, sel_tmo_sig);
/* Free the timeout signal */
linx_free_buf (linx, é&sigqg);
/* Close the LINX endpoint */
linx_close (linx);
return 0;

See Also

linx(7) , linx_close(3) , linx_open(3) linx_receive(3),

Author

Enea LINX team

Return Value

34

ENEA LINXCFG(1) manual page
LINXCFG(1) manual page

Name

linxcfg - a configuration utility for LINX links to other nodes

Synopsis

linxcfg [-t <cm